

Open vSwitch Documentation Contents

	Project
	Community

	Contributing

	Maintaining

	Documentation

	Getting Help

	Getting Started
	What Is Open vSwitch?
	Overview

	What’s here?

	Why Open vSwitch?
	The mobility of state

	Responding to network dynamics

	Maintenance of logical tags

	Hardware integration

	Summary

	Installing Open vSwitch
	Installation from Source

	Installation from Packages

	Others

	Tutorials
	OVS Faucet Tutorial
	Setting Up OVS

	Setting up Faucet

	Overview

	Switching

	Routing

	ACLs

	Finishing Up

	Further Directions

	OVS IPsec Tutorial
	Requirements

	Installing OVS and IPsec Packages

	Configuring IPsec tunnel

	Troubleshooting

	Bug Reporting

	Open vSwitch Advanced Features
	Getting Started

	Using GDB

	Motivation

	Scenario

	Setup

	Implementing Table 0: Admission control

	Testing Table 0

	Implementing Table 1: VLAN Input Processing

	Testing Table 1

	Implementing Table 2: MAC+VLAN Learning for Ingress Port

	Testing Table 2

	Implementing Table 3: Look Up Destination Port

	Testing Table 3

	Implementing Table 4: Output Processing

	Testing Table 4

	OVS Conntrack Tutorial
	Definitions

	Conntrack Related Fields

	Sample Topology

	Tool used to generate TCP segments

	Matching TCP packets

	Summary

	How-to Guides
	OVS
	Open vSwitch with KVM

	Encrypt Open vSwitch Tunnels with IPsec

	Open vSwitch with SELinux

	Open vSwitch with Libvirt

	Open vSwitch with SSL

	Using LISP tunneling

	Connecting VMs Using Tunnels

	Connecting VMs Using Tunnels (Userspace)

	Isolating VM Traffic Using VLANs

	Quality of Service (QoS) Rate Limiting

	How to Use the VTEP Emulator

	Monitoring VM Traffic Using sFlow

	Using Open vSwitch with DPDK

	Deep Dive
	OVS
	Design Decisions In Open vSwitch

	Open vSwitch Datapath Development Guide

	Fuzzing

	Integration Guide for Centralized Control

	Porting Open vSwitch to New Software or Hardware

	OpenFlow Support in Open vSwitch

	Bonding

	Open vSwitch Networking Namespaces on Linux

	Scaling OVSDB Access With Relay

	OVSDB Replication Implementation

	DPDK Support

	OVS-on-Hyper-V Design

	Language Bindings

	Debugging with Record/Replay

	Testing

	Tracing packets inside Open vSwitch

	Userspace Datapath - TSO

	C IDL Compound Indexes

	Open vSwitch Extensions

	Reference Guide
	Man Pages
	ovs-actions

	ovs-appctl

	ovs-ctl

	ovs-l3ping

	ovs-pki

	ovs-sim

	ovs-parse-backtrace

	ovs-tcpdump

	ovs-tcpundump

	ovs-test

	ovs-vlan-test

	ovsdb-server

	ovsdb

	ovsdb

	Open vSwitch Internals
	Contributing to Open vSwitch
	Submitting Patches

	Backporting patches

	Coding Style

	Windows Datapath Coding Style

	Documentation Style

	Open vSwitch Library ABI Updates

	Mailing Lists
	ovs-announce

	ovs-discuss

	ovs-dev

	ovs-git

	ovs-build

	bugs

	security

	Patchwork
	git-pw

	pwclient

	Release Process
	Release Strategy

	Release Numbering

	Release Scheduling

	How to Branch

	How to Release

	Contact

	Reporting Bugs

	Security Process
	What is a vulnerability?

	Step 1: Reception

	Step 2: Assessment

	Step 3a: Document

	Step 3b: Fix

	Step 4: Embargoed Disclosure

	Step 5: Public Disclosure

	The Linux Foundation Open vSwitch Project Charter

	Emeritus Status for OVS Committers

	Expectations for Developers with Open vSwitch Repo Access
	Pre-requisites

	Review

	Git conventions

	Pre-Push Hook

	OVS Committer Grant/Revocation Policy
	Granting Commit Access

	Revoking Commit Access

	Changing the Policy

	Nomination to Grant Commit Access

	Vote to Grant Commit Access

	Vote Results for Grant of Commit Access

	Invitation to Accepted Committer

	Proposal to Revoke Commit Access for Detrimental Behavior

	Vote to Revoke Commit Access

	Vote Results for Revocation of Commit Access

	Notification of Commit Revocation for Detrimental Behavior

	Authors

	Committers

	How Open vSwitch’s Documentation Works
	reStructuredText and Sphinx

	ovs-sphinx-theme

	Read the Docs

	openvswitch.org

	Open vSwitch Documentation
	Build Requirements

	Configuring

	Building

	FAQ
	Bareudp

	Basic Configuration

	Development

	Implementation Details

	General

	Common Configuration Issues

	Using OpenFlow

	Quality of Service (QoS)

	Releases

	Terminology

	VLANs

	VXLANs

Project

Community

	Mailing Lists

	Reporting Bugs

	Patchwork

	Release Process

	Security Process

	Authors

Contributing

	Submitting Patches

	Backporting patches

	Coding Style

	Windows Datapath Coding Style

Maintaining

	The Linux Foundation Open vSwitch Project Charter

	Committers

	Expectations for Developers with Open vSwitch Repo Access

	OVS Committer Grant/Revocation Policy

	Emeritus Status for OVS Committers

Documentation

	Getting Started

	Tutorials

	How-to Guides

	Deep Dive

	Reference Guide

	Open vSwitch Internals

	Open vSwitch Documentation

	FAQ

	Looking for specific information?

	Full Table of Contents

	Index

Getting Help

	Reach out to us here.

Getting Started

How to get started with Open vSwitch.

	What Is Open vSwitch?
	Overview

	What’s here?

	Why Open vSwitch?
	The mobility of state

	Responding to network dynamics

	Maintenance of logical tags

	Hardware integration

	Summary

	Installing Open vSwitch
	Installation from Source

	Installation from Packages

	Others

What Is Open vSwitch?

[image: ../_images/overview.png]

Overview

Open vSwitch is a multilayer software switch licensed under the open source
Apache 2 license. Our goal is to implement a production quality switch
platform that supports standard management interfaces and opens the forwarding
functions to programmatic extension and control.

Open vSwitch is well suited to function as a virtual switch in VM environments.
In addition to exposing standard control and visibility interfaces to the
virtual networking layer, it was designed to support distribution across
multiple physical servers. Open vSwitch supports multiple Linux-based
virtualization technologies including Xen/XenServer, KVM, and VirtualBox.

The bulk of the code is written in platform-independent C and is easily ported
to other environments. The current release of Open vSwitch supports the
following features:

	Standard 802.1Q VLAN model with trunk and access ports

	NIC bonding with or without LACP on upstream switch

	NetFlow, sFlow(R), and mirroring for increased visibility

	QoS (Quality of Service) configuration, plus policing

	Geneve, GRE, VXLAN, STT, and LISP tunneling

	802.1ag connectivity fault management

	OpenFlow 1.0 plus numerous extensions

	Transactional configuration database with C and Python bindings

	High-performance forwarding using a Linux kernel module

The included Linux kernel module supports Linux 3.10 and up.

Open vSwitch can also operate entirely in userspace without assistance from
a kernel module. This userspace implementation should be easier to port than
the kernel-based switch. OVS in userspace can access Linux or DPDK devices.
Note Open vSwitch with userspace datapath and non DPDK devices is considered
experimental and comes with a cost in performance.

What’s here?

The main components of this distribution are:

	ovs-vswitchd, a daemon that implements the switch, along with a companion
Linux kernel module for flow-based switching.

	ovsdb-server, a lightweight database server that ovs-vswitchd queries to
obtain its configuration.

	ovs-dpctl, a tool for configuring the switch kernel module.

	Scripts and specs for building RPMs for Citrix XenServer and Red Hat
Enterprise Linux. The XenServer RPMs allow Open vSwitch to be installed on a
Citrix XenServer host as a drop-in replacement for its switch, with
additional functionality.

	ovs-vsctl, a utility for querying and updating the configuration of
ovs-vswitchd.

	ovs-appctl, a utility that sends commands to running Open vSwitch daemons.

Open vSwitch also provides some tools:

	ovs-ofctl, a utility for querying and controlling OpenFlow switches and
controllers.

	ovs-pki, a utility for creating and managing the public-key infrastructure
for OpenFlow switches.

	ovs-testcontroller, a simple OpenFlow controller that may be useful for
testing (though not for production).

	A patch to tcpdump that enables it to parse OpenFlow messages.

Why Open vSwitch?

Hypervisors need the ability to bridge traffic between VMs and with the outside
world. On Linux-based hypervisors, this used to mean using the built-in L2
switch (the Linux bridge), which is fast and reliable. So, it is reasonable to
ask why Open vSwitch is used.

The answer is that Open vSwitch is targeted at multi-server virtualization
deployments, a landscape for which the previous stack is not well suited. These
environments are often characterized by highly dynamic end-points, the
maintenance of logical abstractions, and (sometimes) integration with or
offloading to special purpose switching hardware.

The following characteristics and design considerations help Open vSwitch cope
with the above requirements.

The mobility of state

All network state associated with a network entity (say a virtual machine)
should be easily identifiable and migratable between different hosts. This may
include traditional “soft state” (such as an entry in an L2 learning table), L3
forwarding state, policy routing state, ACLs, QoS policy, monitoring
configuration (e.g. NetFlow, IPFIX, sFlow), etc.

Open vSwitch has support for both configuring and migrating both slow
(configuration) and fast network state between instances. For example, if a VM
migrates between end-hosts, it is possible to not only migrate associated
configuration (SPAN rules, ACLs, QoS) but any live network state (including,
for example, existing state which may be difficult to reconstruct). Further,
Open vSwitch state is typed and backed by a real data-model allowing for the
development of structured automation systems.

Responding to network dynamics

Virtual environments are often characterized by high-rates of change. VMs
coming and going, VMs moving backwards and forwards in time, changes to the
logical network environments, and so forth.

Open vSwitch supports a number of features that allow a network control system
to respond and adapt as the environment changes. This includes simple
accounting and visibility support such as NetFlow, IPFIX, and sFlow. But
perhaps more useful, Open vSwitch supports a network state database (OVSDB)
that supports remote triggers. Therefore, a piece of orchestration software can
“watch” various aspects of the network and respond if/when they change. This is
used heavily today, for example, to respond to and track VM migrations.

Open vSwitch also supports OpenFlow as a method of exporting remote access to
control traffic. There are a number of uses for this including global network
discovery through inspection of discovery or link-state traffic (e.g. LLDP,
CDP, OSPF, etc.).

Maintenance of logical tags

Distributed virtual switches (such as VMware vDS and Cisco’s Nexus 1000V) often
maintain logical context within the network through appending or manipulating
tags in network packets. This can be used to uniquely identify a VM (in a
manner resistant to hardware spoofing), or to hold some other context that is
only relevant in the logical domain. Much of the problem of building a
distributed virtual switch is to efficiently and correctly manage these tags.

Open vSwitch includes multiple methods for specifying and maintaining tagging
rules, all of which are accessible to a remote process for orchestration.
Further, in many cases these tagging rules are stored in an optimized form so
they don’t have to be coupled with a heavyweight network device. This allows,
for example, thousands of tagging or address remapping rules to be configured,
changed, and migrated.

In a similar vein, Open vSwitch supports a GRE implementation that can handle
thousands of simultaneous GRE tunnels and supports remote configuration for
tunnel creation, configuration, and tear-down. This, for example, can be used
to connect private VM networks in different data centers.

Hardware integration

Open vSwitch’s forwarding path (the in-kernel datapath) is designed to be
amenable to “offloading” packet processing to hardware chipsets, whether housed
in a classic hardware switch chassis or in an end-host NIC. This allows for the
Open vSwitch control path to be able to both control a pure software
implementation or a hardware switch.

There are many ongoing efforts to port Open vSwitch to hardware chipsets. These
include multiple merchant silicon chipsets (Broadcom and Marvell), as well as a
number of vendor-specific platforms. The “Porting” section in the documentation
discusses how one would go about making such a port.

The advantage of hardware integration is not only performance within
virtualized environments. If physical switches also expose the Open vSwitch
control abstractions, both bare-metal and virtualized hosting environments can
be managed using the same mechanism for automated network control.

Summary

In many ways, Open vSwitch targets a different point in the design space than
previous hypervisor networking stacks, focusing on the need for automated and
dynamic network control in large-scale Linux-based virtualization environments.

The goal with Open vSwitch is to keep the in-kernel code as small as possible
(as is necessary for performance) and to re-use existing subsystems when
applicable (for example Open vSwitch uses the existing QoS stack). As of Linux
3.3, Open vSwitch is included as a part of the kernel and packaging for the
userspace utilities are available on most popular distributions.

Installing Open vSwitch

A collection of guides detailing how to install Open vSwitch in a variety of
different environments and using different configurations.

Installation from Source

	Open vSwitch on Linux, FreeBSD and NetBSD
	Obtaining Open vSwitch Sources

	Build Requirements

	Installation Requirements

	Bootstrapping

	Configuring

	Building

	Starting

	Starting OVS in container

	Validating

	Upgrading

	Hot Upgrading

	Reporting Bugs

	Open vSwitch on NetBSD

	Open vSwitch on Windows
	Build Requirements

	Install Requirements

	Bootstrapping

	Configuring

	Building

	Starting

	Validating

	Windows Services

	Windows CI Service

	TODO

	Open vSwitch on Citrix XenServer
	Building

	Build Parameters

	Installing Open vSwitch for XenServer

	Open vSwitch Boot Sequence on XenServer

	Notes

	Reporting Bugs

	Open vSwitch without Kernel Support
	Building and Installing

	Using the Userspace Datapath with ovs-vswitchd

	Firewall Rules

	Other Settings

	Reporting Bugs

	Open vSwitch with DPDK
	Build requirements

	Installing

	Setup

	Validating

	Performance Tuning

	Limitations

	Reporting Bugs

	Open vSwitch with AF_XDP
	Introduction

	AF_XDP Netdev

	Build requirements

	Installing

	Setup AF_XDP netdev

	References

	Performance Tuning

	Example Script

	Limitations/Known Issues

	PVP using tap device

	PVP using vhostuser device

	PCP container using veth

	Bug Reporting

Installation from Packages

Open vSwitch is packaged on a variety of distributions. The tooling required to
build these packages is included in the Open vSwitch tree. The instructions are
provided below.

	Distributions packaging Open vSwitch
	Debian

	Fedora

	Red Hat

	OpenSuSE

	Debian Packaging for Open vSwitch
	Before You Begin

	Building Open vSwitch Debian packages

	Installing .deb Packages

	Reporting Bugs

	Fedora, RHEL 7.x Packaging for Open vSwitch
	Build Requirements

	Bootstraping

	Configuring

	Building

	Installing

	Reporting Bugs

	RHEL 5.6, 6.x Packaging for Open vSwitch
	Prerequisites

	Build Requirements

	Bootstrapping and Configuring

	Building

	Red Hat Network Scripts Integration

	Reporting Bugs

Others

	Bash command-line completion scripts
	ovs-appctl-bashcomp

	ovs-vsctl-bashcomp

	Usage

	Tests

	Open vSwitch Documentation
	Build Requirements

	Configuring

	Building

Open vSwitch on Linux, FreeBSD and NetBSD

This document describes how to build and install Open vSwitch on a generic
Linux, FreeBSD, or NetBSD host. For specifics around installation on a specific
platform, refer to one of the other installation guides listed in Installing Open vSwitch.

Obtaining Open vSwitch Sources

The canonical location for Open vSwitch source code is its Git
repository, which you can clone into a directory named “ovs” with:

$ git clone https://github.com/openvswitch/ovs.git

Cloning the repository leaves the “master” branch initially checked
out. This is the right branch for general development. If, on the
other hand, if you want to build a particular released version, you
can check it out by running a command such as the following from the
“ovs” directory:

$ git checkout v2.7.0

The repository also has a branch for each release series. For
example, to obtain the latest fixes in the Open vSwitch 2.7.x release
series, which might include bug fixes that have not yet been in any
released version, you can check it out from the “ovs” directory with:

$ git checkout origin/branch-2.7

If you do not want to use Git, you can also obtain tarballs for Open
vSwitch release versions via http://openvswitch.org/download/, or
download a ZIP file for any snapshot from the web interface at
https://github.com/openvswitch/ovs.

Build Requirements

To compile the userspace programs in the Open vSwitch distribution, you will
need the following software:

	GNU make

	A C compiler, such as:

	GCC 4.6 or later.

	Clang 3.4 or later.

	MSVC 2013. Refer to Open vSwitch on Windows for additional Windows build
instructions.

While OVS may be compatible with other compilers, optimal support for atomic
operations may be missing, making OVS very slow (see lib/ovs-atomic.h).

	libssl, from OpenSSL, is optional but recommended if you plan to connect the
Open vSwitch to an OpenFlow controller. libssl is required to establish
confidentiality and authenticity in the connections from an Open vSwitch to
an OpenFlow controller. If libssl is installed, then Open vSwitch will
automatically build with support for it.

	libcap-ng, written by Steve Grubb, is optional but recommended. It is
required to run OVS daemons as a non-root user with dropped root privileges.
If libcap-ng is installed, then Open vSwitch will automatically build with
support for it.

	Python 3.4 or later.

	Unbound library, from http://www.unbound.net, is optional but recommended if
you want to enable ovs-vswitchd and other utilities to use DNS names when
specifying OpenFlow and OVSDB remotes. If unbound library is already
installed, then Open vSwitch will automatically build with support for it.
The environment variable OVS_RESOLV_CONF can be used to specify DNS server
configuration file (the default file on Linux is /etc/resolv.conf), and
environment variable OVS_UNBOUND_CONF can be used to specify the
configuration file for unbound.

On Linux, you may choose to compile the kernel module that comes with the Open
vSwitch distribution or to use the kernel module built into the Linux kernel
(version 3.3 or later). See the FAQ question “What features are
not available in the Open vSwitch kernel datapath that ships as part of the
upstream Linux kernel?” for more information on this trade-off. You may also
use the userspace-only implementation, at some cost in features and
performance. Refer to Open vSwitch without Kernel Support for details.

To compile the kernel module on Linux, you must also install the
following:

	A supported Linux kernel version.

For optional support of ingress policing, you must enable kernel
configuration options NET_CLS_BASIC, NET_SCH_INGRESS, and
NET_ACT_POLICE, either built-in or as modules. NET_CLS_POLICE is
obsolete and not needed.)

On kernels before 3.11, the ip_gre module, for GRE tunnels over IP
(NET_IPGRE), must not be loaded or compiled in.

To configure HTB or HFSC quality of service with Open vSwitch, you must
enable the respective configuration options.

To use Open vSwitch support for TAP devices, you must enable CONFIG_TUN.

	To build a kernel module, you need the same version of GCC that was used to
build that kernel.

	A kernel build directory corresponding to the Linux kernel image the module
is to run on. Under Debian and Ubuntu, for example, each linux-image package
containing a kernel binary has a corresponding linux-headers package with
the required build infrastructure.

If you are working from a Git tree or snapshot (instead of from a distribution
tarball), or if you modify the Open vSwitch build system or the database
schema, you will also need the following software:

	Autoconf version 2.63 or later.

	Automake version 1.10 or later.

	libtool version 2.4 or later. (Older versions might work too.)

The datapath tests for userspace and Linux datapaths also rely upon:

	pyftpdlib. Version 1.2.0 is known to work. Earlier versions should
also work.

	GNU wget. Version 1.16 is known to work. Earlier versions should also
work.

	netcat. Several common implementations are known to work.

	curl. Version 7.47.0 is known to work. Earlier versions should also work.

	tftpy. Version 0.6.2 is known to work. Earlier versions should also work.

	netstat. Available from various distro specific packages

The ovs-vswitchd.conf.db(5) manpage will include an E-R diagram, in formats
other than plain text, only if you have the following:

	dot from graphviz (http://www.graphviz.org/).

If you are going to extensively modify Open vSwitch, consider installing the
following to obtain better warnings:

	“sparse” version 0.5.1 or later
(https://git.kernel.org/pub/scm/devel/sparse/sparse.git/).

	GNU make.

	clang, version 3.4 or later

	flake8 along with the hacking flake8 plugin (for Python code). The automatic
flake8 check that runs against Python code has some warnings enabled that
come from the “hacking” flake8 plugin. If it’s not installed, the warnings
just won’t occur until it’s run on a system with “hacking” installed.

You may find the ovs-dev script found in utilities/ovs-dev.py useful.

Installation Requirements

The machine you build Open vSwitch on may not be the one you run it on. To
simply install and run Open vSwitch you require the following software:

	Shared libraries compatible with those used for the build.

	On Linux, if you want to use the kernel-based datapath (which is the most
common use case), then a kernel with a compatible kernel module. This
can be a kernel module built with Open vSwitch (e.g. in the previous
step), or the kernel module that accompanies Linux 3.3 and later. Open
vSwitch features and performance can vary based on the module and the
kernel. Refer to Releases for more information.

	For optional support of ingress policing on Linux, the “tc” program
from iproute2 (part of all major distributions and available at
https://wiki.linuxfoundation.org/networking/iproute2).

	Python 3.4 or later.

On Linux you should ensure that /dev/urandom exists. To support TAP
devices, you must also ensure that /dev/net/tun exists.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If
you pulled the sources directly from an Open vSwitch Git tree or got a
Git tree snapshot, then run boot.sh in the top source directory to build
the “configure” script:

$./boot.sh

Configuring

Configure the package by running the configure script. You can usually
invoke configure without any arguments. For example:

$./configure

By default all files are installed under /usr/local. Open vSwitch also
expects to find its database in /usr/local/etc/openvswitch by default. If
you want to install all files into, e.g., /usr and /var instead of
/usr/local and /usr/local/var and expect to use /etc/openvswitch as
the default database directory, add options as shown here:

$./configure --prefix=/usr --localstatedir=/var --sysconfdir=/etc

Note

Open vSwitch installed with packages like .rpm (e.g. via yum install or
rpm -ivh) and .deb (e.g. via apt-get install or dpkg -i) use the
above configure options.

 Open vSwitch on NetBSD

Open vSwitch on NetBSD

On NetBSD, you might want to install requirements from pkgsrc. In that case,
you need at least the following packages.

	automake

	libtool-base

	gmake

	python37

Some components have additional requirements. Refer to Open vSwitch on Linux, FreeBSD and NetBSD for more
information.

Assuming you are running NetBSD/amd64 7.0.2, you can download and install
pre-built binary packages as the following:

$ PKG_PATH=http://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/amd64/7.0.2/All/
$ export PKG_PATH
$ pkg_add automake libtool-base gmake python37 pkg_alternatives

Note

You might get some warnings about minor version mismatch. These can be safely
ignored.

 Open vSwitch on Windows

Open vSwitch on Windows

Build Requirements

Open vSwitch on Linux uses autoconf and automake for generating Makefiles. It
will be useful to maintain the same build system while compiling on Windows
too. One approach is to compile Open vSwitch in a MinGW environment that
contains autoconf and automake utilities and then use Visual C++ as a compiler
and linker.

The following explains the steps in some detail.

	Mingw

Install Mingw on a Windows machine by following the instructions on
mingw.org [http://www.mingw.org/wiki/Getting_Started].

This should install mingw at C:\Mingw and msys at C:\Mingw\msys. Add
C:\MinGW\bin and C:\Mingw\msys\1.0\bin to PATH environment variable
of Windows.

You can either use the MinGW installer or the command line utility
mingw-get to install both the base packages and additional packages like
automake and autoconf(version 2.68).

Also make sure that /mingw mount point exists. If its not, please
add/create the following entry in /etc/fstab:

'C:/MinGW /mingw'.

	Python 3.4 or later.

Install the latest Python 3.x from python.org and verify that its path is
part of Windows’ PATH environment variable.
We require that you have pypiwin32 library installed.
The library can be installed via pip command:

$ pip install pypiwin32

	Visual Studio

You will need at least Visual Studio 2013 (update 4) to compile userspace
binaries. In addition to that, if you want to compile the kernel module you
will also need to install Windows Driver Kit (WDK) 8.1 Update or later.
To generate the Windows installer you need
WiX Toolset [https://wixtoolset.org/] and also be able to build the
kernel module.

We recommend using the latest Visual Studio version together with the latest
WDK installed.

It is important to get the Visual Studio related environment variables and to
have the $PATH inside the bash to point to the proper compiler and linker.
One easy way to achieve this for VS2013 is to get into the “VS2013 x86 Native
Tools Command Prompt” (in a default installation of Visual Studio 2013 this
can be found under the following location: C:\Program Files (x86)\Microsoft
Visual Studio 12.0\Common7\Tools\Shortcuts) and through it enter into the
bash shell available from msys by typing bash --login.

There is support for generating 64 bit binaries too. To compile under x64,
open the “VS2013 x64 Native Tools Command Prompt” (if your current running OS
is 64 bit) or “VS2013 x64 Cross Tools Command Prompt” (if your current
running OS is not 64 bit) instead of opening its x86 variant. This will
point the compiler and the linker to their 64 bit equivalent.

If after the above step, a which link inside MSYS’s bash says,
/bin/link.exe, rename /bin/link.exe to something else so that the
Visual studio’s linker is used. You should also see a ‘which sort’ report
/bin/sort.exe.

	PThreads4W

For pthread support, install the library, dll and includes of PThreads4W
project from sourceware [https://sourceforge.net/projects/pthreads4w/] to a directory
(e.g.: C:/pthread). You should add the PThreads4W’s dll path
(e.g.: C:\pthread\bin) to the Windows’ PATH environment variable.

	OpenSSL

To get SSL support for Open vSwitch on Windows, you will need to install
OpenSSL for Windows [https://wiki.openssl.org/index.php/Binaries]

Note down the directory where OpenSSL is installed (e.g.:
C:/OpenSSL-Win32) for later use.

Note

Commands prefixed by $ must be run in the Bash shell provided by MinGW.
Open vSwitch commands, such as ovs-dpctl are shown running under the DOS
shell (cmd.exe), as indicated by the > prefix, but will also run
under Bash. The remainder, prefixed by >, are PowerShell commands and
must be run in PowerShell.

 Open vSwitch on Citrix XenServer

Open vSwitch on Citrix XenServer

This document describes how to build and install Open vSwitch on a Citrix
XenServer host. If you want to install Open vSwitch on a generic Linux or BSD
host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Open vSwitch should work with XenServer 5.6.100 and later. However, Open
vSwitch requires Python 3.4 or later, so using Open vSwitch with XenServer 6.5
or earlier requires installing Python 3.x.

Building

You may build from an Open vSwitch distribution tarball or from an Open vSwitch
Git tree. The recommended build environment to build RPMs for Citrix XenServer
is the DDK VM available from Citrix.

	If you are building from an Open vSwitch Git tree, then you will need to
first create a distribution tarball by running:

$./boot.sh
$./configure
$ make dist

You cannot run this in the DDK VM, because it lacks tools that are necessary
to bootstrap the Open vSwitch distribution. Instead, you must run this on a
machine that has the tools listed in Installation Requirements as
prerequisites for building from a Git tree.

	Copy the distribution tarball into /usr/src/redhat/SOURCES inside
the DDK VM.

	In the DDK VM, unpack the distribution tarball into a temporary directory
and “cd” into the root of the distribution tarball.

	To build Open vSwitch userspace, run:

$ rpmbuild -bb xenserver/openvswitch-xen.spec

This produces three RPMs in /usr/src/redhat/RPMS/i386:

	openvswitch

	openvswitch-modules-xen

	openvswitch-debuginfo

The above command automatically runs the Open vSwitch unit tests. To
disable the unit tests, run:

$ rpmbuild -bb --without check xenserver/openvswitch-xen.spec

Build Parameters

openvswitch-xen.spec needs to know a number of pieces of information about
the XenServer kernel. Usually, it can figure these out for itself, but if it
does not do it correctly then you can specify them yourself as parameters to
the build. Thus, the final rpmbuild step above can be elaborated as:

$ VERSION=<Open vSwitch version>
$ KERNEL_NAME=<Xen Kernel name>
$ KERNEL_VERSION=<Xen Kernel version>
$ KERNEL_FLAVOR=<Xen Kernel flavor(suffix)>
$ rpmbuild \
 -D "openvswitch_version $VERSION" \
 -D "kernel_name $KERNEL_NAME" \
 -D "kernel_version $KERNEL_VERSION" \
 -D "kernel_flavor $KERNEL_FLAVOR" \
 -bb xenserver/openvswitch-xen.spec

where:

	<openvswitch version>

	is the version number that appears in the name of the Open vSwitch tarball,
e.g. 0.90.0.

	<Xen Kernel name>

	is the name of the XenServer kernel package, e.g. kernel-xen or
kernel-NAME-xen, without the kernel- prefix.

	<Xen Kernel version>

	is the output of:

$ rpm -q --queryformat "%{Version}-%{Release}" <kernel-devel-package>,

e.g. 2.6.32.12-0.7.1.xs5.6.100.323.170596, where
<kernel-devel-package> is the name of the -devel package
corresponding to <Xen Kernel name>.

	<Xen Kernel flavor (suffix)>

	is either xen or kdump, where xen flavor is the main running
kernel flavor and the kdump flavor is the crashdump kernel flavor.
Commonly, one would specify xen here.

For XenServer 6.5 or above, the kernel version naming no longer contains
KERNEL_FLAVOR. In fact, only providing the uname -r output is enough. So,
the final rpmbuild step changes to:

$ KERNEL_UNAME=<`uname -r` output>
$ rpmbuild \
 -D "kenel_uname $KERNEL_UNAME" \
 -bb xenserver/openvswitch-xen.spec

Installing Open vSwitch for XenServer

To install Open vSwitch on a XenServer host, or to upgrade to a newer version,
copy the openvswitch and openvswitch-modules-xen RPMs to that host with
scp, then install them with rpm -U, e.g.:

$ scp openvswitch-$VERSION-1.i386.rpm \
 openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.i386.rpm \
 root@<host>:
Enter <host>'s root password.
$ ssh root@<host>
Enter <host>'s root password again.
$ rpm -U openvswitch-$VERSION-1.i386.rpm \
 openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.i386.rpm

To uninstall Open vSwitch from a XenServer host, remove the packages:

$ ssh root@<host>
Enter <host>'s root password again.
$ rpm -e openvswitch openvswitch-modules-xen-$XEN_KERNEL_VERSION

After installing or uninstalling Open vSwitch, the XenServer should be rebooted
as soon as possible.

Open vSwitch Boot Sequence on XenServer

When Open vSwitch is installed on XenServer, its startup script
/etc/init.d/openvswitch runs early in boot. It does roughly the following:

	Loads the OVS kernel module, openvswitch.

	Starts ovsdb-server, the OVS configuration database.

	XenServer expects there to be no bridges configured at startup, but the OVS
configuration database likely still has bridges configured from before
reboot. To match XenServer expectations, the startup script deletes all
configured bridges from the database.

	Starts ovs-vswitchd, the OVS switching daemon.

At this point in the boot process, then, there are no Open vSwitch bridges,
even though all of the Open vSwitch daemons are running. Later on in boot,
/etc/init.d/management-interface (part of XenServer, not Open vSwitch)
creates the bridge for the XAPI management interface by invoking
/opt/xensource/libexec/interface-reconfigure. Normally this program
consults XAPI’s database to obtain information about how to configure the
bridge, but XAPI is not running yet(*) so it instead consults
/var/xapi/network.dbcache, which is a cached copy of the most recent
network configuration.

	(*) Even if XAPI were running, if this XenServer node is a pool slave then the

	query would have to consult the master, which requires network access,
which begs the question of how to configure the management interface.

XAPI starts later on in the boot process. XAPI can then create other bridges
on demand using /opt/xensource/libexec/interface-reconfigure. Now that
XAPI is running, that program consults XAPI directly instead of reading the
cache.

As part of its own startup, XAPI invokes the Open vSwitch XAPI plugin script
/etc/xapi.d/openvswitch-cfg-update passing the update command. The
plugin script does roughly the following:

	Calls /opt/xensource/libexec/interface-reconfigure with the rewrite
command, to ensure that the network cache is up-to-date.

	Queries the Open vSwitch manager setting (named vswitch_controller) from
the XAPI database for the XenServer pool.

	If XAPI and OVS are configured for different managers, or if OVS is
configured for a manager but XAPI is not, runs ovs-vsctl emer-reset to
bring the Open vSwitch configuration to a known state. One effect of
emer-reset is to deconfigure any manager from the OVS database.

	If XAPI is configured for a manager, configures the OVS manager to match with
ovs-vsctl set-manager.

Notes

	The Open vSwitch boot sequence only configures an OVS configuration database
manager. There is no way to directly configure an OpenFlow controller on
XenServer and, as a consequence of the step above that deletes all of the
bridges at boot time, controller configuration only persists until XenServer
reboot. The configuration database manager can, however, configure
controllers for bridges. See the BUGS section of ovs-testcontroller(8) for
more information on this topic.

	The Open vSwitch startup script automatically adds a firewall rule to allow
GRE traffic. This rule is needed for the XenServer feature called “Cross-Host
Internal Networks” (CHIN) that uses GRE. If a user configures tunnels other
than GRE (ex: Geneve, VXLAN, LISP), they will have to either manually add a
iptables firewall rule to allow the tunnel traffic or add it through a
startup script (Please refer to the “enable-protocol” command in the
ovs-ctl(8) manpage).

Reporting Bugs

Please report problems to bugs@openvswitch.org.

 Open vSwitch without Kernel Support

Open vSwitch without Kernel Support

Open vSwitch can operate, at a cost in performance, entirely in userspace,
without assistance from a kernel module. This file explains how to install
Open vSwitch in such a mode.

This version of Open vSwitch should be built manually with configure and
make. Debian packaging for Open vSwitch is also included, but it has not
been recently tested, and so Debian packages are not a recommended way to use
this version of Open vSwitch.

Warning

The userspace-only mode of Open vSwitch without DPDK is considered
experimental. It has not been thoroughly tested.

 Open vSwitch with DPDK

Open vSwitch with DPDK

This document describes how to build and install Open vSwitch using a DPDK
datapath. Open vSwitch can use the DPDK library to operate entirely in
userspace.

Important

The releases FAQ lists support for the required
versions of DPDK for each version of Open vSwitch. If building OVS and
DPDK outside of the master build tree users should consult this list
first.

 Open vSwitch with AF_XDP

Open vSwitch with AF_XDP

This document describes how to build and install Open vSwitch using
AF_XDP netdev.

Warning

The AF_XDP support of Open vSwitch is considered ‘experimental’,
and it is not compiled in by default.

 Distributions packaging Open vSwitch

Distributions packaging Open vSwitch

This document lists various popular distributions packaging Open vSwitch.
Open vSwitch is packaged by various distributions for multiple platforms and
architectures.

Note

The packaged version available with distributions may not be latest
Open vSwitch release.

 Debian Packaging for Open vSwitch

Debian Packaging for Open vSwitch

This document describes how to build Debian packages for Open vSwitch. To
install Open vSwitch on Debian without building Debian packages, refer to
Open vSwitch on Linux, FreeBSD and NetBSD instead.

Note

These instructions should also work on Ubuntu and other Debian derivative
distributions.

 Fedora, RHEL 7.x Packaging for Open vSwitch

Fedora, RHEL 7.x Packaging for Open vSwitch

This document provides instructions for building and installing Open vSwitch
RPM packages on a Fedora Linux host. Instructions for the installation of Open
vSwitch on a Fedora Linux host without using RPM packages can be found in the
Open vSwitch on Linux, FreeBSD and NetBSD.

These instructions have been tested with Fedora 23, and are also applicable for
RHEL 7.x and its derivatives, including CentOS 7.x and Scientific Linux 7.x.

Build Requirements

You will need to install all required packages to build the RPMs.
Newer distributions use dnf but if it’s not available, then use
yum instructions.

The command below will install RPM tools and generic build dependencies.
And (optionally) include these packages: libcap-ng libcap-ng-devel dpdk-devel.

DNF:

$ dnf install @'Development Tools' rpm-build dnf-plugins-core

YUM:

$ yum install @'Development Tools' rpm-build yum-utils

Then it is necessary to install Open vSwitch specific build dependencies.
The dependencies are listed in the SPEC file, but first it is necessary
to replace the VERSION tag to be a valid SPEC.

The command below will create a temporary SPEC file:

$ sed -e 's/@VERSION@/0.0.1/' rhel/openvswitch-fedora.spec.in \
 > /tmp/ovs.spec

And to install specific dependencies, use the corresponding tool below.
For some of the dependencies on RHEL you may need to add two additional
repositories to help yum-builddep, e.g.:

$ subscription-manager repos --enable=rhel-7-server-extras-rpms
$ subscription-manager repos --enable=rhel-7-server-optional-rpms

or for RHEL 8:

$ subscription-manager repos \
 --enable=codeready-builder-for-rhel-8-x86_64-rpms

DNF:

$ dnf builddep /tmp/ovs.spec

YUM:

$ yum-builddep /tmp/ovs.spec

Once that is completed, remove the file /tmp/ovs.spec.

Bootstraping

Refer to Bootstrapping.

Configuring

Refer to Configuring.

Building

User Space RPMs

To build Open vSwitch user-space RPMs, execute the following from the directory
in which ./configure was executed:

$ make rpm-fedora

This will create the RPMs openvswitch, python3-openvswitch,
openvswitch-test, openvswitch-devel and openvswitch-debuginfo.

To enable DPDK support in the openvswitch package, the --with dpdk option
can be added:

$ make rpm-fedora RPMBUILD_OPT="--with dpdk --without check"

To enable AF_XDP support in the openvswitch package, the --with afxdp
option can be added:

$ make rpm-fedora RPMBUILD_OPT="--with afxdp --without check"

You can also have the above commands automatically run the Open vSwitch unit
tests. This can take several minutes.

$ make rpm-fedora RPMBUILD_OPT="--with check"

Kernel OVS Tree Datapath RPM

To build the Open vSwitch kernel module for the currently running kernel
version, run:

$ make rpm-fedora-kmod

To build the Open vSwitch kernel module for another kernel version, the desired
kernel version can be specified via the kversion macro. For example:

$ make rpm-fedora-kmod \
 RPMBUILD_OPT='-D "kversion 4.3.4-300.fc23.x86_64"'

Installing

RPM packages can be installed by using the command rpm -i. Package
installation requires superuser privileges.

The openvswitch-kmod RPM should be installed first if the Linux OVS tree
datapath module is to be used. The openvswitch-kmod RPM should not be
installed if only the in-tree Linux datapath or user-space datapath is needed.
Refer to the FAQ for more information about the various Open
vSwitch datapath options.

In most cases only the openvswitch RPM will need to be installed. The
python3-openvswitch, openvswitch-test, openvswitch-devel, and
openvswitch-debuginfo RPMs are optional unless required for a specific
purpose.

Refer to the RHEL README [https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst] for additional usage and configuration
information.

Reporting Bugs

Report problems to bugs@openvswitch.org.

 RHEL 5.6, 6.x Packaging for Open vSwitch

RHEL 5.6, 6.x Packaging for Open vSwitch

This document describes how to build and install Open vSwitch on a Red Hat
Enterprise Linux (RHEL) host. If you want to install Open vSwitch on a generic
Linux host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

We have tested these instructions with RHEL 5.6 and RHEL 6.0.

For RHEL 7.x (or derivatives, such as CentOS 7.x), you should follow the
instructions in the Fedora, RHEL 7.x Packaging for Open vSwitch. The Fedora spec files are used for RHEL
7.x.

Prerequisites

You may build from an Open vSwitch distribution tarball or from an Open vSwitch
Git tree.

The default RPM build directory, _topdir, has five directories in the
top-level.

	BUILD/

	where the software is unpacked and built

	RPMS/

	where the newly created binary package files are written

	SOURCES/

	contains the original sources, patches, and icon files

	SPECS/

	contains the spec files for each package to be built

	SRPMS/

	where the newly created source package files are written

Before you begin, note the RPM sources directory on your version of RHEL. The
command rpmbuild --showrc will show the configuration for each of those
directories. Alternatively, the command rpm --eval '%{_topdir}' shows the
current configuration for the top level directory and the command rpm --eval
'%{_sourcedir}' does the same for the sources directory. On RHEL 5, the
default RPM _topdir is /usr/src/redhat and the default RPM sources
directory is /usr/src/redhat/SOURCES. On RHEL 6, the default _topdir is
$HOME/rpmbuild and the default RPM sources directory is
$HOME/rpmbuild/SOURCES.

Build Requirements

You will need to install all required packages to build the RPMs.
The command below will install RPM tools and generic build dependencies:

$ yum install @'Development Tools' rpm-build yum-utils

Then it is necessary to install Open vSwitch specific build dependencies.
The dependencies are listed in the SPEC file, but first it is necessary
to replace the VERSION tag to be a valid SPEC.

The command below will create a temporary SPEC file:

$ sed -e 's/@VERSION@/0.0.1/' rhel/openvswitch.spec.in > /tmp/ovs.spec

And to install specific dependencies, use yum-builddep tool:

$ yum-builddep /tmp/ovs.spec

Once that is completed, remove the file /tmp/ovs.spec.

If python3-sphinx package is not available in your version of RHEL, you can
install it via pip with ‘pip install sphinx’.

Open vSwitch requires python 3.4 or newer which is not available in older
distributions. In the case of RHEL 6.x and its derivatives, one option is
to install python34 from EPEL [https://fedoraproject.org/wiki/EPEL].

Bootstrapping and Configuring

If you are building from a distribution tarball, skip to Building.
If not, you must be building from an Open vSwitch Git tree. Determine what
version of Autoconf is installed (e.g. run autoconf --version). If it is
not at least version 2.63, then you must upgrade or use another machine to
build the packages.

Assuming all requirements have been met, build the tarball by running:

$./boot.sh
$./configure
$ make dist

You must run this on a machine that has the tools listed in
Build Requirements as prerequisites for building from a Git tree.
Afterward, proceed with the rest of the instructions using the distribution
tarball.

Now you have a distribution tarball, named something like
openvswitch-x.y.z.tar.gz. Copy this file into the RPM sources directory,
e.g.:

$ cp openvswitch-x.y.z.tar.gz $HOME/rpmbuild/SOURCES

Broken build symlink

Some versions of the RHEL 6 kernel-devel package contain a broken build
symlink. If you are using such a version, you must fix the problem before
continuing.

To find out whether you are affected, run:

$ cd /lib/modules/<version>
$ ls -l build/

where <version> is the version number of the RHEL 6 kernel.

Note

The trailing slash in the final command is important. Be sure to include
it.

 Bash command-line completion scripts

Bash command-line completion scripts

There are two completion scripts available: ovs-appctl-bashcomp.bash and
ovs-vsctl-bashcomp.bash.

ovs-appctl-bashcomp

ovs-appctl-bashcomp.bash adds bash command-line completion support for
ovs-appctl, ovs-dpctl, ovs-ofctl and ovsdb-tool commands.

Features

	Display available completion or complete on unfinished user input (long
option, subcommand, and argument).

	Subcommand hints

	Convert between keywords like bridge, port, interface, or dp
and the available record in ovsdb.

Limitations

	Only supports a small set of important keywords (dp, datapath,
bridge, switch, port, interface, iface).

	Does not support parsing of nested options. For example:

$ ovsdb-tool create [db [schema]]

	Does not support expansion on repeated argument. For example:

$ ovs-dpctl show [dp...]).

	Only supports matching on long options, and only in the format --option
[arg]. Do not use --option=[arg].

ovs-vsctl-bashcomp

ovs-vsctl-bashcomp.bash adds Bash command-line completion support for
ovs-vsctl command.

Features

	Display available completion and complete on user input for global/local
options, command, and argument.

	Query database and expand keywords like table, record, column, or
key, to available completions.

	Deal with argument relations like ‘one and more’, ‘zero or one’.

	Complete multiple ovs-vsctl commands cascaded via --.

Limitations

Completion of very long ovs-vsctl commands can take up to several seconds.

Usage

The bashcomp scripts should be placed at /etc/bash_completion.d/ to be
available for all bash sessions. Running make install will place the
scripts to $(sysconfdir)/bash_completion.d/, thus, the user should specify
--sysconfdir=/etc at configuration. If OVS is installed from packages, the
scripts will automatically be placed inside /etc/bash_completion.d/.

If you just want to run the scripts in one bash, you can remove them from
/etc/bash_completion.d/ and run the scripts via .
ovs-appctl-bashcomp.bash or . ovs-vsctl-bashcomp.bash.

Tests

Unit tests are added in tests/completion.at and integrated into autotest
framework. To run the tests, just run make check.

 Open vSwitch Documentation

Open vSwitch Documentation

This document describes how to build the OVS documentation for use offline. A
continuously updated, online version can be found at docs.openvswitch.org [http://docs.openvswitch.org].

Note

These instructions provide information on building the documentation locally.
For information on writing documentation, refer to
Documentation Style

 Tutorials

Tutorials

Getting started with Open vSwitch (OVS).

	OVS Faucet Tutorial
	Setting Up OVS

	Setting up Faucet

	Overview

	Switching

	Routing

	ACLs

	Finishing Up

	Further Directions

	OVS IPsec Tutorial
	Requirements

	Installing OVS and IPsec Packages

	Configuring IPsec tunnel

	Troubleshooting

	Bug Reporting

	Open vSwitch Advanced Features
	Getting Started

	Using GDB

	Motivation

	Scenario

	Setup

	Implementing Table 0: Admission control

	Testing Table 0

	Implementing Table 1: VLAN Input Processing

	Testing Table 1

	Implementing Table 2: MAC+VLAN Learning for Ingress Port

	Testing Table 2

	Implementing Table 3: Look Up Destination Port

	Testing Table 3

	Implementing Table 4: Output Processing

	Testing Table 4

	OVS Conntrack Tutorial
	Definitions

	Conntrack Related Fields

	Sample Topology

	Tool used to generate TCP segments

	Matching TCP packets

	Summary

 OVS Faucet Tutorial

OVS Faucet Tutorial

This tutorial demonstrates how Open vSwitch works with a general-purpose
OpenFlow controller, using the Faucet controller as a simple way to get
started. It was tested with the “master” branch of Open vSwitch and version
1.6.15 of Faucet. It does not use advanced or recently added features in OVS
or Faucet, so other versions of both pieces of software are likely to work
equally well.

The goal of the tutorial is to demonstrate Open vSwitch and Faucet in an
end-to-end way, that is, to show how it works from the Faucet controller
configuration at the top, through the OpenFlow flow table, to the datapath
processing. Along the way, in addition to helping to understand the
architecture at each level, we discuss performance and troubleshooting issues.
We hope that this demonstration makes it easier for users and potential users
to understand how Open vSwitch works and how to debug and troubleshoot it.

We provide enough details in the tutorial that you should be able to fully
follow along by following the instructions.

Setting Up OVS

This section explains how to set up Open vSwitch for the purpose of using it
with Faucet for the tutorial.

You might already have Open vSwitch installed on one or more computers or VMs,
perhaps set up to control a set of VMs or a physical network. This is
admirable, but we will be using Open vSwitch in a different way to set up a
simulation environment called the OVS “sandbox”. The sandbox does not use
virtual machines or containers, which makes it more limited, but on the other
hand it is (in this writer’s opinion) easier to set up.

There are two ways to start a sandbox: one that uses the Open vSwitch that is
already installed on a system, and another that uses a copy of Open vSwitch
that has been built but not yet installed. The latter is more often used and
thus better tested, but both should work. The instructions below explain both
approaches:

	Get a copy of the Open vSwitch source repository using Git, then cd into
the new directory:

$ git clone https://github.com/openvswitch/ovs.git
$ cd ovs

The default checkout is the master branch. You will need to use the master
branch for this tutorial as it includes some functionality required for this
tutorial.

	If you do not already have an installed copy of Open vSwitch on your system,
or if you do not want to use it for the sandbox (the sandbox will not
disturb the functionality of any existing switches), then proceed to step 3.
If you do have an installed copy and you want to use it for the sandbox, try
to start the sandbox by running:

$ tutorial/ovs-sandbox

Note

The default behaviour for some of the commands used in this tutorial
changed in Open vSwitch versions 2.9.x and 2.10.x which breaks the
tutorial. We recommend following step 3 and building master from
source or using a system Open vSwitch that is version 2.8.x or older.

 OVS IPsec Tutorial

OVS IPsec Tutorial

This document provides a step-by-step guide for running IPsec tunnel in Open
vSwitch. A more detailed description on OVS IPsec tunnel and its
configuration modes can be found in Encrypt Open vSwitch Tunnels with IPsec.

Requirements

OVS IPsec tunnel requires Linux kernel (>= v3.10.0) and OVS out-of-tree kernel
module. The compatible IKE daemons are LibreSwan (>= v3.23) and StrongSwan
(>= v5.3.5).

Installing OVS and IPsec Packages

OVS IPsec has .deb and .rpm packages. You should use the right package
based on your Linux distribution. This tutorial uses Ubuntu 16.04 and Fedora 32
as examples.

Ubuntu

	Follow Debian Packaging for Open vSwitch to build debian packages.

Note

If you have already installed OVS, then you only need to install
openvswitch-pki_