Open vSwitch
Release 2.9.4

Nov 09, 2018

Contents

1 Open vSwitch Documentation 1
1.1 How the Documentation is Organised i i ittt e e 1
1.2 FIrst SePS . o o v o o e e e e e e e e e e e e 1
1.3 DeeperDive e e e e e e 1
1.4 The Open vSwitch Project e 2
1.5 Getting Help e e e e e e 2

2 Getting Started 3
2.1 What Is Open vSwitch? e 4

2,11 OVEIVIEW . . o v vt e e e e e e e e e e e e e e e e 4
2.1.2 What'shere? e e e 5
2.2 Why Open vSwitch? e e e e 5
22.1 Themobility of state L e 6
2.2.2 Responding to network dynamics L. 6
2.2.3 Maintenance of logical tags e e e 6
2.2.4 Hardware integration v v i it e e e e e e e e e e e e e e e e e 6
225 Summary ... e e e e e e e e e e e e e e 7
2.3 Installing Open vSwitch o e e e 7
2.3.1 Installation from Source Ll 7
2.3.2 Installation from Packages 41
233 Upgrades e e e e e e e e e e e 48
234 Others oL e e 50
3 Tutorials 53
3.1 OVSFaucet Tutorial e e 53
3.1 Setting Up OVS L L L o o e e e e e 53
3.1.2 Settingup Faucet e 54
313 0 OVEIVIEW . . o vttt e e e e e e e e 55
3.1.4 Switching e e 56
315 Routing . . . v o e e e e e e e e e e e e e 66
31,6 ACLS . . . o e e 73
3.1.7 Finishing Up o L e e e e e e 75
3.1.8 Further Directions« . . i i e e e e e e e e e e 75
3.2 OpenvSwitch Advanced Features e 76
32,1 Getting Started L L e e e e e e e e e e e e e e 76
322 UsingGDB e e e e e 77
323 Motivation oo e e e e e e 77

324 Scenario . . . oL . e e e e e e 78

325 Setup ..o e e e e e e e e 78

3.2.6 Implementing Table 0: Admissioncontrol 79

327 TestingTable O 80

3.2.8 Implementing Table 1: VLAN Input Processing 81

329 TestingTable 1 e 82
3.2.10 Implementing Table 2: MAC+VLAN Learning for IngressPort 83
3211 TestingTable 2 o o e e e e e e e 84
3.2.12 Implementing Table 3: Look Up Destination Port 85
3213 TestingTable3 86
3.2.14 Implementing Table 4: Output Processing, 88
3.2.15 TestingTable 4 o e e e e e e e e e e 89

33 OVNSandboxo 90
3.3.1 Getting Started L L. e e e e e e e e e e 90

332 UsingGDB 91

333 Creating OVN Resourceso i it it i 91

334 USINZOVO-IACE . . .« « v v v v v v i e 92

34 OVNOpenStack Tutorial o o o e e e e e e e e e 92
34.1 Setting Up DevStack o e e e 93

3.4.2 DevStack preliminaries oL e 95

343 Shortening UUIDs e 96

344 OVEIVIEW . . . v v i i e e e e 97

345 Switching L o 98

34.6 ROULNZ o ot e e e e e e e e e e e 109

347 AddingaGateway e e e e e e e e e e e 113

348 IPVO . . e e e e 116

349 ACLS . . . o 120
3410 DHCPo e 121
3411 Further DIirectionS o v v v i it e e e e e e e e e e e e e e e e 124

4 Deep Dive 125
4.1 OVS 125
4.1.1 Design Decisions In Open vSwitch o ... 125

4.1.2 Open vSwitch Datapath Development Guide 140

4.1.3 Integration Guide for Centralized Control 144

4.1.4 Porting Open vSwitch to New Software or Hardware 147

4.1.5 OpenFlow Supportin Open vSwitch 151

4.1.6 Bonding e e e e e 156

4.1.7 OVSDB Replication Implementation 159

4.1.8 TheDPDK Datapath 161

4.1.9 OVS-on-Hyper-V Designt 169
4.1.10 Language Bindings L e e 176
4101 TeStNG .« o v v o e e e e e e e e e e e e e e e e e e 176
4.1.12 Tracing packets inside Open vSwitch 182
4.1.13 CIDL Compound Indexes 184

42 OVN . 188
4.2.1 OVN Gateway High Availability Plan 188

422 RoleBased AccessControl e 194

423 What's New withOVSand OVN 2.8 195

5 How-to Guides 199
5.1 OVS 199
5.1.1 OpenvSwitchwith KVMo . o 199

5.1.2 Open vSwitch with SELinux e 200

5.1.3 Open vSwitch with Libvirt e e e e
5.1.4 OpenvSwitchwith SSL e
5.1.5 Using LISPtunneling e
5.1.6 Connecting VMs Using Tunnels
5.1.7 Connecting VMs Using Tunnels (Userspace)
5.1.8 Isolating VM Traffic Using VLANs o i
5.1.9 Quality of Service (QoS) Rate Limiting,
5.1.10 HowtoUsethe VTEP Emulator
5.1.11 Monitoring VM Trafic Using sFlow
5.1.12 Using Open vSwitch with DPDK o o oo
52 OVN L
5.2.1 Open Virtual Networking With Docker
5.2.2 Integration of Containers with OVN and OpenStack
5.2.3 Open Virtual Network With firewalld
Reference Guide
6.1 ManPages e e e e e e e
6.1.1 OVS-eSt e e e
6.1.2 ovs-vlan-test L. e e e e e e e e e e
6.1.3 0ovsdb-SEIrVer. e e e e e
6.1.4 ovsdb . ..
6.1.5 ovsdb ...
Open vSwitch FAQ
7.1 Basic Configuration e e e e e e e e e e e e e e e e
7.2 Development o e e e e e e e e e e e e e e e e e
7.3 Implementation Details L
T4 General L. e e e e e e
7.5 Common Configuration Issues L e
7.6 Using OpenFlow e e e e e e e e e
7.7 Quality of Service (QOS) L e e e e
7.8 Releases e e e
7.9 Terminology e e e e e
710 VLANS .« . e e e e
TA1 VXLANS . .o e e
Open vSwitch Internals
8.1 Contributing to Open VSwitch e
8.1.1 Submitting Patches e e e e e
8.1.2 Backporting patches L e e e e e
8.1.3 Open vSwitch Coding Style e
8.1.4 Open vSwitch Windows Datapath Coding Style
8.1.5 Open vSwitch Documentation Style
8.1.6 Open vSwitch Library ABI Updates
82 Mailing LisSts o v o e e e e e e e e e e e e e e
8.2.1 OVS-aNNOUNCE o v v vttt e e e e
8.2.2 0ovs-diSCUSS L. e e
8.2.3 ovs-dev ... e e e e
824 OVS-GIt
825 ovs-build ...
8.2.6 BUES . . . e e e e e e
8.2.7 SECUTILY . . . v v e e e e e e e e e e e
8.3 Patchwork e e e
831 It-PW . . . e e

247
247
247
249
251
257
260

271
271
274
275
276
278
283
291
293
297
297
301

303
303
303
309
312
320
323
329
330
330
331
331
331
331
331
331
331
331

8.4

8.5
8.6

8.7
8.8
8.9

8.10

8.11
8.12
8.13

Open vSwitch Release Process o o o i i e e e e e e 332
8.4.1 Release Strategy o o e e e e e e e e 332
8.4.2 Release Numbering L e 333
8.43 Release Scheduling L 333
844 Contact e e 333
Reporting Bugs in Open vSwitch e 333
Open vSwitch’s Security Process o L L e e e 334
8.6.1 Whatisavulnerability? L e 334
8.6.2 Stepl:Reception L e 335
8.6.3 Step2: ASSESSIMENL . . .« o v i v it e e e e e e e e e e e e e e e 335
8.6.4 Step3a: Document e e e e 335
8.6.5 Step3b: Fix o L . e 337
8.6.6 Step 4: Embargoed Disclosure e 337
8.6.7 Step5: PublicDisclosure L e 337
The Linux Foundation Open vSwitch Project Charter 338
Emeritus Status for OVS Committers e 340
Expectations for Developers with Open vSwitch Repo Access 341
8.9.1 Pre-requiSites i e e e e e e e e e e 341
892 Review e e 341
8.9.3 GItconventions i i e e e e e e e e e e 341
OVS Committer Grant/Revocation Policy 342
8.10.1 Granting Commit ACCESS . . . v v v v v e e e e e e e e e e e e e e e e e e 342
8.10.2 Revoking Commit ACCESS v v v v vt e e e e e e e e e e e e e e 343
8.10.3 Changingthe Policy 343
8.10.4 Nomination to Grant Commit ACCESS« v v v v vt e e e e e e e 344
8.10.5 Vote to Grant Commit ACCESS+« v v v v it e e e e e e e 344
8.10.6 Vote Results for Grant of Commit ACCESS v v v v v v vt i e e 344
8.10.7 Invitation to Accepted Committer e e 344
8.10.8 Proposal to Revoke Commit Access for Detrimental Behavior 345
8.10.9 Vote to Revoke Commit Access oo vttt e 345
8.10.10 Vote Results for Revocation of Commit Accesso i v v vt 345
8.10.11 Notification of Commit Revocation for Detrimental Behavior 346
AUthOors . . . o e e 346
COMMIIETS o o v o o e i e e s e e e e e e e e e e e e e 358
How Open vSwitch’s Documentation Works 358
8.13.1 reStructuredTextand Sphinx Lo oo 358
8.13.2 ovs-sphinx-theme e 359
8.13.3 ReadtheDocs o o e e e 359
8.13.4 openvswitch.org L e e e e e e e 359

CHAPTER 1

Open vSwitch Documentation

1.1 How the Documentation is Organised

The Open vSwitch documentation is organised into multiple sections:

e Installation guides guide you through installing Open vSwitch (OVS) and Open Virtual Network (OVN) on a
variety of different platforms

* Tutorials take you through a series of steps to configure OVS and OVN in sandboxed environments
* Topic guides provide a high level overview of OVS and OVN internals and operation
* How-to guides are recipes or use-cases for OVS and OVN. They are more advanced than the tutorials.

» Frequently Asked Questions provide general insight into a variety of topics related to configuration and operation
of OVS and OVN.

1.2 First Steps

Getting started with Open vSwitch (OVS) or Open Virtual Network (OVN) for Open vSwitch? Start here.
e Overview: What Is Open vSwitch? | Why Open vSwitch?

¢ Install: Open vSwitch on Linux, FreeBSD and NetBSD | Open vSwitch without Kernel Support | Open vSwitch
on NetBSD | Open vSwitch on Windows | Open vSwitch on Citrix XenServer | Open vSwitch with DPDK |
Installation FAQs

e Tutorials: OVS Faucet Tutorial | Open vSwitch Advanced Features | OVN Sandbox | OVN OpenStack Tutorial

1.3 Deeper Dive

¢ Architecture Design Decisions In Open vSwitch | OpenFlow Support in Open vSwitch | Integration Guide for
Centralized Control | Porting Open vSwitch to New Software or Hardware

Open vSwitch, Release 2.9.4

1.4

DPDK Using Open vSwitch with DPDK | DPDK vHost User Ports
Windows OVS-on-Hyper-V Design

Integrations: Language Bindings

Reference Guides: Reference Guide

Testing Testing

Packaging: Debian Packaging for Open vSwitch | RHEL 5.6, 6.x Packaging for Open vSwitch | Fedora, RHEL
7.x Packaging for Open vSwitch

The Open vSwitch Project

Learn more about the Open vSwitch project and about how you can contribute:

1.5

Community: Open vSwitch Release Process | Authors | Mailing Lists | Patchwork | Reporting Bugs in Open
vSwitch | Open vSwitch’s Security Process

Contributing: Submitting Patches | Backporting patches | Open vSwitch Coding Style | Open vSwitch Windows
Datapath Coding Style

Maintaining: The Linux Foundation Open vSwitch Project Charter | Committers | Expectations for Developers
with Open vSwitch Repo Access | OVS Committer Grant/Revocation Policy | Emeritus Status for OVS Committers

Documentation: Open vSwitch Documentation Style | Building Open vSwitch Documentation | How Open
vSwitch’s Documentation Works

Getting Help

Seeing an issue of potential bug? Report problems to bugs @openvswitch.org

Looking for specific information? Try the genindex, modindex or the detailed table of contents.

Chapter 1. Open vSwitch Documentation

mailto:bugs@openvswitch.org

CHAPTER 2

Getting Started

How to get started with Open vSwitch.

Open vSwitch, Release 2.9.4

2.1 What Is Open vSwitch?

F o o
h Security: VLAN K Monitoring: Netflow,
== isolation, traffic filtering “%% sFlow, SPAN, RSPAN

A\ A y

b

-w Y
Automated Control:

0 Qos: traffic queuing OpenFlow, OVSDB
and traffic shaping
mgmt. protocol

k. y |

4

2.1.1 Overview

Open vSwitch is a multilayer software switch licensed under the open source Apache 2 license. Our goal is to im-
plement a production quality switch platform that supports standard management interfaces and opens the forwarding
functions to programmatic extension and control.

Open vSwitch is well suited to function as a virtual switch in VM environments. In addition to exposing standard
control and visibility interfaces to the virtual networking layer, it was designed to support distribution across multiple
physical servers. Open vSwitch supports multiple Linux-based virtualization technologies including Xen/XenServer,
KVM, and VirtualBox.

The bulk of the code is written in platform-independent C and is easily ported to other environments. The current
release of Open vSwitch supports the following features:

 Standard 802.1Q VLAN model with trunk and access ports

* NIC bonding with or without LACP on upstream switch

4 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

NetFlow, sFlow(R), and mirroring for increased visibility

QoS (Quality of Service) configuration, plus policing
* Geneve, GRE, VXLAN, STT, and LISP tunneling
* 802.1ag connectivity fault management
e OpenFlow 1.0 plus numerous extensions
* Transactional configuration database with C and Python bindings
 High-performance forwarding using a Linux kernel module
The included Linux kernel module supports Linux 3.10 and up.

Open vSwitch can also operate entirely in userspace without assistance from a kernel module. This userspace imple-
mentation should be easier to port than the kernel-based switch. OVS in userspace can access Linux or DPDK devices.
Note Open vSwitch with userspace datapath and non DPDK devices is considered experimental and comes with a cost
in performance.

2.1.2 What’s here?

The main components of this distribution are:

* ovs-vswitchd, a daemon that implements the switch, along with a companion Linux kernel module for flow-
based switching.

* ovsdb-server, a lightweight database server that ovs-vswitchd queries to obtain its configuration.
 ovs-dpctl, a tool for configuring the switch kernel module.

* Scripts and specs for building RPMs for Citrix XenServer and Red Hat Enterprise Linux. The XenServer RPMs
allow Open vSwitch to be installed on a Citrix XenServer host as a drop-in replacement for its switch, with
additional functionality.

* ovs-vsctl, a utility for querying and updating the configuration of ovs-vswitchd.

* ovs-appctl, a utility that sends commands to running Open vSwitch daemons.
Open vSwitch also provides some tools:

* ovs-ofctl, a utility for querying and controlling OpenFlow switches and controllers.

* ovs-pki, a utility for creating and managing the public-key infrastructure

2.2 Why Open vSwitch?

Hypervisors need the ability to bridge traffic between VMs and with the outside world. On Linux-based hypervisors,
this used to mean using the built-in L2 switch (the Linux bridge), which is fast and reliable. So, it is reasonable to ask
why Open vSwitch is used.

The answer is that Open vSwitch is targeted at multi-server virtualization deployments, a landscape for which the
previous stack is not well suited. These environments are often characterized by highly dynamic end-points, the main-
tenance of logical abstractions, and (sometimes) integration with or offloading to special purpose switching hardware.

The following characteristics and design considerations help Open vSwitch cope with the above requirements.

2.2. Why Open vSwitch? 5

Open vSwitch, Release 2.9.4

2.2.1 The mobility of state

All network state associated with a network entity (say a virtual machine) should be easily identifiable and migratable
between different hosts. This may include traditional “soft state” (such as an entry in an L2 learning table), L3
forwarding state, policy routing state, ACLs, QoS policy, monitoring configuration (e.g. NetFlow, IPFIX, sFlow), etc.

Open vSwitch has support for both configuring and migrating both slow (configuration) and fast network state between
instances. For example, if a VM migrates between end-hosts, it is possible to not only migrate associated configuration
(SPAN rules, ACLs, QoS) but any live network state (including, for example, existing state which may be difficult to
reconstruct). Further, Open vSwitch state is typed and backed by a real data-model allowing for the development of
structured automation systems.

2.2.2 Responding to network dynamics

Virtual environments are often characterized by high-rates of change. VMs coming and going, VMs moving backwards
and forwards in time, changes to the logical network environments, and so forth.

Open vSwitch supports a number of features that allow a network control system to respond and adapt as the environ-
ment changes. This includes simple accounting and visibility support such as NetFlow, IPFIX, and sFlow. But perhaps
more useful, Open vSwitch supports a network state database (OVSDB) that supports remote triggers. Therefore, a
piece of orchestration software can “watch” various aspects of the network and respond if/when they change. This is
used heavily today, for example, to respond to and track VM migrations.

Open vSwitch also supports OpenFlow as a method of exporting remote access to control traffic. There are a number
of uses for this including global network discovery through inspection of discovery or link-state traffic (e.g. LLDP,
CDP, OSPF, etc.).

2.2.3 Maintenance of logical tags

Distributed virtual switches (such as VMware vDS and Cisco’s Nexus 1000V) often maintain logical context within
the network through appending or manipulating tags in network packets. This can be used to uniquely identify a VM
(in a manner resistant to hardware spoofing), or to hold some other context that is only relevant in the logical domain.
Much of the problem of building a distributed virtual switch is to efficiently and correctly manage these tags.

Open vSwitch includes multiple methods for specifying and maintaining tagging rules, all of which are accessible
to a remote process for orchestration. Further, in many cases these tagging rules are stored in an optimized form so
they don’t have to be coupled with a heavyweight network device. This allows, for example, thousands of tagging or
address remapping rules to be configured, changed, and migrated.

In a similar vein, Open vSwitch supports a GRE implementation that can handle thousands of simultaneous GRE
tunnels and supports remote configuration for tunnel creation, configuration, and tear-down. This, for example, can be
used to connect private VM networks in different data centers.

2.2.4 Hardware integration

Open vSwitch’s forwarding path (the in-kernel datapath) is designed to be amenable to “offloading” packet processing
to hardware chipsets, whether housed in a classic hardware switch chassis or in an end-host NIC. This allows for the
Open vSwitch control path to be able to both control a pure software implementation or a hardware switch.

There are many ongoing efforts to port Open vSwitch to hardware chipsets. These include multiple merchant silicon
chipsets (Broadcom and Marvell), as well as a number of vendor-specific platforms. The ‘“Porting” section in the
documentation discusses how one would go about making such a port.

6 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

The advantage of hardware integration is not only performance within virtualized environments. If physical switches
also expose the Open vSwitch control abstractions, both bare-metal and virtualized hosting environments can be
managed using the same mechanism for automated network control.

2.2.5 Summary

In many ways, Open vSwitch targets a different point in the design space than previous hypervisor networking stacks,
focusing on the need for automated and dynamic network control in large-scale Linux-based virtualization environ-
ments.

The goal with Open vSwitch is to keep the in-kernel code as small as possible (as is necessary for performance) and
to re-use existing subsystems when applicable (for example Open vSwitch uses the existing QoS stack). As of Linux
3.3, Open vSwitch is included as a part of the kernel and packaging for the userspace utilities are available on most
popular distributions.

2.3 Installing Open vSwitch

A collection of guides detailing how to install Open vSwitch in a variety of different environments and using different
configurations.

2.3.1 Installation from Source
Open vSwitch on Linux, FreeBSD and NetBSD

This document describes how to build and install Open vSwitch on a generic Linux, FreeBSD, or NetBSD host. For
specifics around installation on a specific platform, refer to one of the other installation guides listed in /nstalling Open
vSwitch.

Obtaining Open vSwitch Sources

The canonical location for Open vSwitch source code is its Git repository, which you can clone into a directory named
“ovs” with:

$ git clone https://github.com/openvswitch/ovs.git

Cloning the repository leaves the “master” branch initially checked out. This is the right branch for general devel-
opment. If, on the other hand, if you want to build a particular released version, you can check it out by running a
command such as the following from the “ovs” directory:

$ git checkout v2.7.0

The repository also has a branch for each release series. For example, to obtain the latest fixes in the Open vSwitch
2.7.x release series, which might include bug fixes that have not yet been in any released version, you can check it out
from the “ovs” directory with:

’$ git checkout origin/branch-2.7

If you do not want to use Git, you can also obtain tarballs for Open vSwitch release versions via http://openvswitch.
org/download/, or download a ZIP file for any snapshot from the web interface at https://github.com/openvswitch/ovs.

2.3. Installing Open vSwitch 7

http://openvswitch.org/download/
http://openvswitch.org/download/
https://github.com/openvswitch/ovs

Open vSwitch, Release 2.9.4

Build Requirements

To compile the userspace programs in the Open vSwitch distribution, you will need the following software:

GNU make
A C compiler, such as:
— GCC 4.6 or later.
— Clang 3.4 or later.
— MSVC 2013. Refer to Open vSwitch on Windows for additional Windows build instructions.

While OVS may be compatible with other compilers, optimal support for atomic operations may be missing,
making OVS very slow (see 1ib/ovs—-atomic.h).

libssl, from OpenSSL, is optional but recommended if you plan to connect the Open vSwitch to an OpenFlow
controller. libssl is required to establish confidentiality and authenticity in the connections from an Open vSwitch
to an OpenFlow controller. If libssl is installed, then Open vSwitch will automatically build with support for it.

libcap-ng, written by Steve Grubb, is optional but recommended. It is required to run OVS daemons as a non-
root user with dropped root privileges. If libcap-ng is installed, then Open vSwitch will automatically build with
support for it.

Python 2.7. You must also have the Python six library version 1.4.0 or later.

On Linux, you may choose to compile the kernel module that comes with the Open vSwitch distribution or to use the
kernel module built into the Linux kernel (version 3.3 or later). See the Open vSwitch FAQ question “What features
are not available in the Open vSwitch kernel datapath that ships as part of the upstream Linux kernel?” for more
information on this trade-off. You may also use the userspace-only implementation, at some cost in features and
performance. Refer to Open vSwitch without Kernel Support for details.

To compile the kernel module on Linux, you must also install the following:

A supported Linux kernel version.

For optional support of ingress policing, you must enable kernel configuration options NET_CLS_BASIC,
NET_SCH_INGRESS, and NET_ACT_POLICE, either built-in or as modules. NET_CLS_POLICE is obsolete
and not needed.)

On kernels before 3.11, the ip_gre module, for GRE tunnels over IP (NET__IPGRE), must not be loaded or
compiled in.

To configure HTB or HFSC quality of service with Open vSwitch, you must enable the respective configuration
options.

To use Open vSwitch support for TAP devices, you must enable CONF IG_TUN.
To build a kernel module, you need the same version of GCC that was used to build that kernel.

A kernel build directory corresponding to the Linux kernel image the module is to run on. Under Debian and
Ubuntu, for example, each linux-image package containing a kernel binary has a corresponding linux-headers
package with the required build infrastructure.

If you are working from a Git tree or snapshot (instead of from a distribution tarball), or if you modify the Open
vSwitch build system or the database schema, you will also need the following software:

Autoconf version 2.63 or later.
Automake version 1.10 or later.

libtool version 2.4 or later. (Older versions might work too.)

The datapath tests for userspace and Linux datapaths also rely upon:

Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

pyftpdlib. Version 1.2.0 is known to work. Earlier versions should also work.
e GNU wget. Version 1.16 is known to work. Earlier versions should also work.
* netcat. Several common implementations are known to work.

e curl. Version 7.47.0 is known to work. Earlier versions should also work.

* tftpy. Version 0.6.2 is known to work. Earlier versions should also work.

The ovs-vswitchd.conf.db(5) manpage will include an E-R diagram, in formats other than plain text, only if you have
the following:

¢ dot from graphviz (http://www.graphviz.org/).
If you are going to extensively modify Open vSwitch, consider installing the following to obtain better warnings:
» “sparse” version 0.5.1 or later (https://git.kernel.org/pub/scm/devel/sparse/sparse.git/).
* GNU make.
* clang, version 3.4 or later

* flake8 along with the hacking flake8 plugin (for Python code). The automatic flake8 check that runs against
Python code has some warnings enabled that come from the “hacking” flake8 plugin. If it’s not installed, the
warnings just won’t occur until it’s run on a system with “hacking” installed.

You may find the ovs-dev script found in utilities/ovs—dev.py useful.

Installation Requirements

The machine you build Open vSwitch on may not be the one you run it on. To simply install and run Open vSwitch
you require the following software:

* Shared libraries compatible with those used for the build.

¢ On Linux, if you want to use the kernel-based datapath (which is the most common use case), then a kernel with
a compatible kernel module. This can be a kernel module built with Open vSwitch (e.g. in the previous step),
or the kernel module that accompanies Linux 3.3 and later. Open vSwitch features and performance can vary
based on the module and the kernel. Refer to Releases for more information.

* For optional support of ingress policing on Linux, the “tc” program from iproute2 (part of all major distributions
and available at https://wiki.linuxfoundation.org/networking/iproute2).

* Python 2.7. You must also have the Python six library version 1.4.0 or later.

On Linux you should ensure that /dev/urandom exists. To support TAP devices, you must also ensure that /dev/
net/tun exists.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If you pulled the sources directly from an Open
vSwitch Git tree or got a Git tree snapshot, then run boot.sh in the top source directory to build the “configure” script:

$./boot.sh

2.3. Installing Open vSwitch 9

http://www.graphviz.org/
https://git.kernel.org/pub/scm/devel/sparse/sparse.git/
https://wiki.linuxfoundation.org/networking/iproute2

Open vSwitch, Release 2.9.4

Configuring

Configure the package by running the configure script. You can usually invoke configure without any arguments. For
example:

$./configure

By default all files are installed under /usr/local. Open vSwitch also expects to find its database in /usr/
local/etc/openvswitch by default. If you want to install all files into, e.g., /usr and /var instead of /
usr/local and /usr/local/var and expect to use /etc/openvswitch as the default database directory,
add options as shown here:

$./configure —--prefix=/usr --localstatedir=/var --sysconfdir=/etc

Note: Open vSwitch installed with packages like .rpm (e.g. via yum install or rpm —ivh) and .deb (e.g. via
apt—get install or dpkg -—1i) use the above configure options.

By default, static libraries are built and linked against. If you want to use shared libraries instead:

’$./configure --enable-shared

To use a specific C compiler for compiling Open vSwitch user programs, also specify it on the configure command
line, like so:

’$./configure CC=gcc-4.2

To use ‘clang’ compiler:

’$./configure CC=clang

To supply special flags to the C compiler, specify them as CFLAGS on the configure command line. If you want the
default CFLAGS, which include —g to build debug symbols and —02 to enable optimizations, you must include them
yourself. For example, to build with the default CFLAGS plus —mssse 3, you might run configure as follows:

’$./configure CFLAGS="-g -02 -mssse3"

For efficient hash computation special flags can be passed to leverage built-in intrinsics. For example on X86_64 with
SSEA4.2 instruction set support, CRC32 intrinsics can be used by passing -msse4 . 2:

’$./configure CFLAGS="-g -02 -mssed4.2"®

Also builtin popent instruction can be used to speedup the counting of the bits set in an integer. For example on
X86_64 with POPCNT support, it can be enabled by passing -mpopcnt:

’$./configure CFLAGS="-g -02 -mpopcnt"’

If you are on a different processor and don’t know what flags to choose, it is recommended to use -march=native
settings:

’$./configure CFLAGS="-g —-02 -march=native"

With this, GCC will detect the processor and automatically set appropriate flags for it. This should not be used if you
are compiling OVS outside the target machine.

10 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

Note: CFLAGS are not applied when building the Linux kernel module. Custom CFLAGS for the kernel module are
supplied using the EXTRA_CFLAGS variable when running make. For example:

S make EXTRA_CFLAGS="-Wno-error=date-time"

To build the Linux kernel module, so that you can run the kernel-based switch, pass the location of the kernel build
directory on ——with-1inux. For example, to build for a running instance of Linux:

’$./configure —-with-linux=/lib/modules/$ (uname -r)/build

Note: If ——with-1inux requests building for an unsupported version of Linux, then configure will fail with
an error message. Refer to the Open vSwitch FAQ for advice in that case.

If you wish to build the kernel module for an architecture other than the architecture of the machine used for the build,
you may specify the kernel architecture string using the KARCH variable when invoking the configure script. For
example, to build for MIPS with Linux:

$./configure --with-linux=/path/to/linux KARCH=mips

If you plan to do much Open vSwitch development, you might want to add ——enable-Werror, which adds the
~Werror option to the compiler command line, turning warnings into errors. That makes it impossible to miss
warnings generated by the build. For example:

$./configure —--enable-Werror

If you’re building with GCC, then, for improved warnings, install sparse (see “Prerequisites”) and enable it for
the build by adding ——enable-sparse. Use this with ——enable-Werror to avoid missing both compiler and
sparse warnings, e.g.:

’$./configure —--enable-Werror —--enable-sparse

To build with gcov code coverage support, add ——enable-coverage:

’$./configure —--enable-coverage

The configure script accepts a number of other options and honors additional environment variables. For a full list,
invoke configure with the ——help option:

’$./configure —--help

You can also run configure from a separate build directory. This is helpful if you want to build Open vSwitch in more
than one way from a single source directory, e.g. to try out both GCC and Clang builds, or to build kernel modules for
more than one Linux version. For example:

$ mkdir _gcc && (cd _gcc && ./configure CC=gcc)
$ mkdir _clang && (cd _clang && ./configure CC=clang)

Under certains loads the ovsdb-server and other components perform better when using the jemalloc memory allocator,
instead of the glibc memory allocator. If you wish to link with jemalloc add it to LIBS:

$./configure LIBS=-ljemalloc

2.3. Installing Open vSwitch 11

Open vSwitch, Release 2.9.4

Building

1. Run GNU make in the build directory, e.g.:

’s make

or if GNU make is installed as “gmake”:

’$ gmake

If you used a separate build directory, run make or gmake from that directory, e.g.:

$ make -C _gcc
$ make -C _clang

Note: Some versions of Clang and ccache are not completely compatible. If you see unusual warnings when
you use both together, consider disabling ccache.

2. Consider running the testsuite. Refer to 7esting for instructions.

3. Runmake install toinstall the executables and manpages into the running system, by default under /usr/
local:

’$ make install

5. If you built kernel modules, you may install them, e.g.:

’$ make modules_install

It is possible that you already had a Open vSwitch kernel module installed on your machine that came from
upstream Linux (in a different directory). To make sure that you load the Open vSwitch kernel module you built
from this repository, you should create a depmod . d file that prefers your newly installed kernel modules over
the kernel modules from upstream Linux. The following snippet of code achieves the same:

$ config_file="/etc/depmod.d/openvswitch.conf"
$ for module in datapath/linux/*.ko; do
modname="$ (basename ${module})"
echo "override ${modname%.ko} * extra" >> "Sconfig_file"
echo "override ${modname%.ko} * weak-updates" >> "Sconfig file"
done
$ depmod -a

Finally, load the kernel modules that you need. e.g.:

’$ /sbin/modprobe openvswitch

To verify that the modules have been loaded, run /sbin/1smod and check that openvswitch is listed:

’$ /sbin/lsmod | grep openvswitch

Note: If the modprobe operation fails, look at the last few kernel log messages (e.g. with dmesg | tail).
Generally, issues like this occur when Open vSwitch is built for a kernel different from the one into which you
are trying to load it. Run modinfo on openvswitch.ko and on a module built for the running kernel, e.g.:

12

Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

$ /sbin/modinfo openvswitch.ko
$ /sbin/modinfo /lib/modules/$ (uname -r)/kernel/net/bridge/bridge.ko

Compare the “vermagic” lines output by the two commands. If they differ, then Open vSwitch was built for the
wrong kernel.

If you decide to report a bug or ask a question related to module loading, include the output from the dmesg
and modinfo commands mentioned above.

Starting

On Unix-alike systems, such as BSDs and Linux, starting the Open vSwitch suite of daemons is a simple process.
Open vSwitch includes a shell script, and helpers, called ovs-ctl which automates much of the tasks for starting and
stopping ovsdb-server, and ovs-vswitchd. After installation, the daemons can be started by using the ovs-ctl utility.
This will take care to setup initial conditions, and start the daemons in the correct order. The ovs-ctl utility is located
in ‘$(pkgdatadir)/scripts’, and defaults to ‘/usr/local/share/openvswitch/scripts’. An example after install might be:

$ export PATH=$PATH:/usr/local/share/openvswitch/scripts
$ ovs-ctl start

Additionally, the ovs-ctl script allows starting / stopping the daemons individually using specific options. To start just
the ovsdb-server:

$ export PATH=S$PATH:/usr/local/share/openvswitch/scripts
$ ovs—-ctl --no-ovs-vswitchd start

Likewise, to start just the ovs-vswitchd:

$ export PATH=$PATH:/usr/local/share/openvswitch/scripts
$ ovs-ctl --no-ovsdb-server start

Refer to ovs-ctl(8) for more information on ovs-ctl.

In addition to using the automated script to start Open vSwitch, you may wish to manually start the various daemons.
Before starting ovs-vswitchd itself, you need to start its configuration database, ovsdb-server. Each machine on which
Open vSwitch is installed should run its own copy of ovsdb-server. Before ovsdb-server itself can be started, configure
a database that it can use:

$ mkdir -p /usr/local/etc/openvswitch
$ ovsdb-tool create /usr/local/etc/openvswitch/conf.db \
vswitchd/vswitch.ovsschema

Configure ovsdb-server to use database created above, to listen on a Unix domain socket, to connect to any managers
specified in the database itself, and to use the SSL configuration in the database:

$ mkdir -p /usr/local/var/run/openvswitch

$ ovsdb-server —-remote=punix:/usr/local/var/run/openvswitch/db.sock \
——remote=db:0Open_vSwitch, Open_vSwitch,manager_options \
——-private-key=db:0Open_vSwitch, SSL,private_key \
—-—certificate=db:0pen_vSwitch, SSL,certificate \
—-bootstrap-ca-cert=db:0Open_vSwitch, SSL,ca_cert \
—--pidfile --detach --log-file

2.3. Installing Open vSwitch 13

Open vSwitch, Release 2.9.4

Note: If you built Open vSwitch without SSL support, then omit ——private-key, ——certificate, and
—-bootstrap-ca-cert.)

Initialize the database using ovs-vsctl. This is only necessary the first time after you create the database with ovsdb-
tool, though running it at any time is harmless:

’$ ovs—-vsctl ——no-wait init

Start the main Open vSwitch daemon, telling it to connect to the same Unix domain socket:

’$ ovs-vswitchd --pidfile --detach --log-file

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features. For example, to create a bridge
named br0 and add ports eth0 and vifl.O0 toit:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO
$ ovs-vsctl add-port br0 vifl.O

Refer to ovs-vsctl(8) for more details. You may also wish to refer to 7esting for information on more generic testing
of OVS.

Upgrading

When you upgrade Open vSwitch from one version to another you should also upgrade the database schema:

Note: The following manual steps may also be accomplished by using ovs-ctl to stop and start the daemons after
upgrade. The ovs-ctl script will automatically upgrade the schema.

1. Stop the Open vSwitch daemons, e.g.:

$ kill “cd /usr/local/var/run/openvswitch && cat ovsdb-server.pid ovs-vswitchd.

2. Install the new Open vSwitch release by using the same configure options as was used for installing the previous
version. If you do not use the same configure options, you can end up with two different versions of Open
vSwitch executables installed in different locations.

3. Upgrade the database, in one of the following two ways:

« If there is no important data in your database, then you may delete the database file and recreate it with
ovsdb-tool, following the instructions under “Building and Installing Open vSwitch for Linux, FreeBSD
or NetBSD”.

* If you want to preserve the contents of your database, back it up first, then use ovsdb-tool convert
to upgrade it, e.g.:

$ ovsdb-tool convert /usr/local/etc/openvswitch/conf.db \
vswitchd/vswitch.ovsschema

14 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

4.

Start the Open vSwitch daemons as described under Starting above.

Hot Upgrading

Upgrading Open vSwitch from one version to the next version with minimum disruption of traffic going through the
system that is using that Open vSwitch needs some considerations:

1.

If the upgrade only involves upgrading the userspace utilities and daemons of Open vSwitch, make sure that the
new userspace version is compatible with the previously loaded kernel module.

An upgrade of userspace daemons means that they have to be restarted. Restarting the daemons means that the
OpenFlow flows in the ovs-vswitchd daemon will be lost. One way to restore the flows is to let the controller
re-populate it. Another way is to save the previous flows using a utility like ovs-ofctl and then re-add them after
the restart. Restoring the old flows is accurate only if the new Open vSwitch interfaces retain the old ‘ofport’
values.

When the new userspace daemons get restarted, they automatically flush the old flows setup in the kernel. This
can be expensive if there are hundreds of new flows that are entering the kernel but userspace daemons are busy
setting up new userspace flows from either the controller or an utility like ovs-ofctl. Open vSwitch database
provides an option to solve this problem through the other config:flow-restore-wait column of
the Open_vSwitch table. Refer to the ovs-vswitchd.conf.db(5) manpage for details.

If the upgrade also involves upgrading the kernel module, the old kernel module needs to be unloaded and the
new kernel module should be loaded. This means that the kernel network devices belonging to Open vSwitch is
recreated and the kernel flows are lost. The downtime of the traffic can be reduced if the userspace daemons are
restarted immediately and the userspace flows are restored as soon as possible.

The ovs-ctl utility’s restart function only restarts the userspace daemons, makes sure that the ‘ofport’ val-
ues remain consistent across restarts, restores userspace flows using the ovs-ofctl utility and also uses the
other_config:flow-restore-wait column to keep the traffic downtime to the minimum. The ovs-ctl util-
ity’s force—-reload-kmod function does all of the above, but also replaces the old kernel module with the new
one. Open vSwitch startup scripts for Debian, XenServer and RHEL use ovs-ctl’s functions and it is recommended
that these functions be used for other software platforms too.

Reporting Bugs

Report problems to bugs @openvswitch.org.

Open vSwitch on NetBSD

On NetBSD, you might want to install requirements from pkgsrc. In that case, you need at least the following packages.

automake
libtool-base
gmake
python27
py27-six
py27-xml

Some components have additional requirements. Refer to Open vSwitch on Linux, FreeBSD and NetBSD for more
information.

2.3. Installing Open vSwitch 15

mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

Assuming you are running NetBSD/amd64 6.1.2, you can download and install pre-built binary packages as the fol-
lowing:

$ PKG_PATH=http://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/amd64/7.0.2/A11/

$ export PKG_PATH

$ pkg_add automake libtool-base gmake python27 py27-six py27-xml \
pkg_alternatives

Note: You might get some warnings about minor version mismatch. These can be safely ignored.

NetBSD’s /usr/bin/make is not GNU make. GNU make is installed as /usr/pkg/bin/gmake by the above
mentioned gmake package.

As all executables installed with pkgsrc are placed in /usr/pkg/bin/ directory, it might be a good idea to add it to
your PATH. Or install ovs by gmake and gmake install.

Open vSwitch on NetBSD is currently “userspace switch” implementation in the sense described in Open vSwitch
without Kernel Support and Porting Open vSwitch to New Software or Hardware.

Open vSwitch on Windows

Build Requirements

Open vSwitch on Linux uses autoconf and automake for generating Makefiles. It will be useful to maintain the same
build system while compiling on Windows too. One approach is to compile Open vSwitch in a MinGW environment
that contains autoconf and automake utilities and then use Visual C++ as a compiler and linker.

The following explains the steps in some detail.
* Mingw
Install Mingw on a Windows machine by following the instructions on mingw.org.

This should install mingw at C:\Mingw and msys at C:\Mingw\msys. Add C:\MinGW\bin and
C:\Mingw\msys\1.0\bin to PATH environment variable of Windows.

You can either use the MinGW installer or the command line utility mingw—get to install both the base
packages and additional packages like automake and autoconf(version 2.68).

Also make sure that /mingw mount point exists. If its not, please add/create the following entry in /etc/
fstab:

'C:/MinGW /mingw'.

e Python

Install the latest Python 2.x from python.org and verify that its path is part of Windows’ PATH environment
variable. We require that you have Python six and pypiwin32 libraries installed. The libraries can be installed
via pip command:

$ pip install six
$ pip install pypiwin32

¢ Visual Studio

You will need at least Visual Studio 2013 (update 4) to compile userspace binaries. In addition to that, if you
want to compile the kernel module you will also need to install Windows Driver Kit (WDK) 8.1 Update.

16 Chapter 2. Getting Started

http://www.mingw.org/wiki/Getting_Started

Open vSwitch, Release 2.9.4

It is important to get the Visual Studio related environment variables and to have the $PATH inside the bash
to point to the proper compiler and linker. One easy way to achieve this for VS2013 is to get into the
“VS2013 x86 Native Tools Command Prompt” (in a default installation of Visual Studio 2013 this can be
found under the following location: C: \Program Files (x86)\Microsoft Visual Studio 12.
0\Common7\Tools\Shortcuts) and through it enter into the bash shell available from msys by typing
bash --login.

There is support for generating 64 bit binaries too. To compile under x64, open the “VS2013 x64 Native Tools
Command Prompt” (if your current running OS is 64 bit) or “VS2013 x64 Cross Tools Command Prompt” (if
your current running OS is not 64 bit) instead of opening its x86 variant. This will point the compiler and the
linker to their 64 bit equivalent.

If after the above step, a which 1link inside MSYS’s bash says, /bin/link.exe, rename /bin/link.
exe to something else so that the Visual studio’s linker is used. You should also see a ‘which sort’ report
/bin/sort.exe.

e pthreads-win32

For pthread support, install the library, dll and includes of pthreads-win32 project from sourceware to a directory
(e.g.: C:/pthread). You should add the pthread-win32’s dll path (e.g.: C:\pthread\d11\x86) to the
Windows’ PATH environment variable.

* OpenSSL
To get SSL support for Open vSwitch on Windows, you will need to install OpenSSL for Windows

Note down the directory where OpenSSL is installed (e.g.: C: /OpenSSL-Win32) for later use.

Note: Commands prefixed by $ must be run in the Bash shell provided by MinGW. Open vSwitch commands, such
as ovs—dpctl are shown running under the DOS shell (cmd. exe), as indicated by the > prefix, but will also run
under Bash. The remainder, prefixed by >, are PowerShell commands and must be run in PowerShell.

Install Requirements

* Share network adaptors

We require that you don’t disable the “Allow management operating system to share this network adapter”
under ‘Virtual Switch Properties’ > ‘Connection type: External network’, in the HyperV virtual network switch
configuration.

¢ Checksum Offloads

While there is some support for checksum/segmentation offloads in software, this is still a work in progress. Till
the support is complete we recommend disabling TX/RX offloads for both the VM’s as well as the HyperV.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If you pulled the sources directly from an Open
vSwitch Git tree or got a Git tree snapshot, then run boot.sh in the top source directory to build the “configure” script:

$./boot.sh

2.3. Installing Open vSwitch 17

ftp://sourceware.org/pub/pthreads-win32/prebuilt-dll-2-9-1-release
https://wiki.openssl.org/index.php/Binaries

Open vSwitch, Release 2.9.4

Configuring

Configure the package by running the configure script. You should provide some configure options to choose the right
compiler, linker, libraries, Open vSwitch component installation directories, etc. For example:

$./configure CC=./build-aux/cccl LD="$ (which link)" \
LIBS="-1ws2_32 -liphlpapi -lwbemuuid -lole32 -loleaut32" \
——prefix="C:/openvswitch/usr" \
—--localstatedir="C:/openvswitch/var" \
—-sysconfdir="C:/openvswitch/etc" \
——with-pthread="C:/pthread"

Note: By default, the above enables compiler optimization for fast code. For default compiler optimization, pass the
-—with-debug configure option.

To configure with SSL support, add the requisite additional options:

$./configure CC=./build-aux/cccl LD=""which link " \
LIBS="-1lws2_32 -liphlpapi -lwbemuuid -lole32 -loleaut32" \
——prefix="C:/openvswitch/usr" \
--localstatedir="C:/openvswitch/var"
—-sysconfdir="C:/openvswitch/etc" \
—-with-pthread="C:/pthread" \
-—enable-ssl —--with-openssl="C:/OpenSSL-Win32"

Finally, to the kernel module also:

$./configure CC=./build-aux/cccl LD="'which link ™" \
LIBS="-1lws2_32 -liphlpapi -lwbemuuid -lo0le32 -loleaut32" \
——prefix="C:/openvswitch/usr" \
-—-localstatedir="C:/openvswitch/var" \
—-sysconfdir="C:/openvswitch/etc" \
——with-pthread="C:/pthread" \
-—enable-ssl —--with-openssl="C:/OpenSSL-Win32" \
—-—-with-vstudiotarget="<target type>"

Possible values for <target type> are: Debug and Release

Note: You can directly use the Visual Studio 2013 IDE to compile the kernel datapath. Open the ovsext.sln file in the
IDE and build the solution.

Refer to Open vSwitch on Linux, FreeBSD and NetBSD for information on additional configuration options.

Building

Once correctly configured, building Open vSwitch on Windows is similar to building on Linux, FreeBSD, or NetBSD.

1. Run make for the ported executables in the top source directory, e.g.:

$ make

For faster compilation, you can pass the - argument to make. For example, to run 4 jobs simultaneously, run
make —j4.

18 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

Note: MSYS 1.0.18 has a bug that causes parallel make to hang. You can overcome this by downgrading to
MSYS 1.0.17. A simple way to downgrade is to exit all MinGW sessions and then run the below command
from MSVC developers command prompt.:

’> mingw-get upgrade msys-core-bin=1.0.17-1

2. To run all the unit tests in Open vSwitch, one at a time:

’s make check

To run all the unit tests in Open vSwitch, up to 8 in parallel:

’$ make check TESTSUITEFLAGS="-j8"

3. To install all the compiled executables on the local machine, run:

’$ make install

Note: This will install the Open vSwitch executables in C:/openvswitch. You can add
C:\openvswitch\usr\binandC:\openvswitch\usr\sbin to Windows’ PATH environment
variable for easy access.

The Kernel Module

If you are building the kernel module, you will need to copy the below files to the target Hyper-V machine.
e ./datapath-windows/x64/Win8.1Debug/package/ovsext.inf
e ./datapath-windows/x64/Win8.1Debug/package/OVSExt.sys
* ./datapath-windows/x64/Win8.1Debug/package/ovsext.cat
e ./datapath-windows/misc/install.cmd

e ./datapath-windows/misc/uninstall.cmd

Note: The above path assumes that the kernel module has been built using Windows DDK 8.1 in Debug mode.
Change the path appropriately, if a different WDK has been used.

Now run . /uninstall.cmd to remove the old extension. Once complete, run . /install.cmd to insert the new
one. For this to work you will have to turn on TESTSIGNING boot option or ‘Disable Driver Signature Enforcement’
during boot. The following commands can be used:

> bcdedit /set LOADOPTIONS DISABLE_INTEGRITY_CHECKS
> bcdedit /set TESTSIGNING ON
> bcdedit /set nointegritychecks ON

Note: You may have to restart the machine for the settings to take effect.

2.3. Installing Open vSwitch 19

Open vSwitch, Release 2.9.4

In the Virtual Switch Manager configuration you can enable the Open vSwitch Extension on an existing switch or
create a new switch. If you are using an existing switch, make sure to enable the “Allow Management OS” option for
VXLAN to work (covered later).

The command to create a new switch named ‘OVS-Extended-Switch’ using a physical NIC named ‘Ethernet 1’ is:

PS > New-VMSwitch "OVS-Extended-Switch" -NetAdapterName "Ethernet 1"

Note: You can obtain the list of physical NICs on the host using ‘Get-NetAdapter’ command.

In the properties of any switch, you should should now see “Open vSwitch Extension” under ‘Extensions’. Click the
check box to enable the extension. An alternative way to do the same is to run the following command:

PS > Enable-VMSwitchExtension "Open vSwitch Extension" OVS-Extended-Switch

Note: If you enabled the extension using the command line, a delay of a few seconds has been observed for the
change to be reflected in the Ul This is not a bug in Open vSwitch.

Starting

Important: The following steps assume that you have installed the Open vSwitch utilities in the local machine via
‘make install’.

Before starting ovs-vswitchd itself, you need to start its configuration database, ovsdb-server. Each machine on which
Open vSwitch is installed should run its own copy of ovsdb-server. Before ovsdb-server itself can be started, configure
a database that it can use:

> ovsdb-tool create C:\openvswitch\etc\openvswitch\conf.db \
C:\openvswitch\usr\share\openvswitch\vswitch.ovsschema

Configure ovsdb-server to use database created above and to listen on a Unix domain socket:

> ovsdb-server -vfile:info --remote=punix:db.sock --log-file \
—-pidfile —-detach

Note: The logfile is created at C: /openvswitch/var/log/openvswitch/

Initialize the database using ovs-vsctl. This is only necessary the first time after you create the database with ovsdb-
tool, though running it at any time is harmless:

> ovs-vsctl ——no-wait init

Tip: If you would later like to terminate the started ovsdb-server, run:

’> ovs—appctl -t ovsdb-server exit

Start the main Open vSwitch daemon, telling it to connect to the same Unix domain socket:

20 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

’> ovs-vswitchd -vfile:info --log-file --pidfile --detach

Tip: If you would like to terminate the started ovs-vswitchd, run:

’> ovs—appctl exit

Note: The logfile is created at C: /openvswitch/var/log/openvswitch/

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features.

Add bridges

Let’s start by creating an integration bridge, br—int and a PIF bridge, br-pif:

> ovs-vsctl add-br br-int
> ovs-vsctl add-br br-pif

Note: There’s a known bug that running the ovs-vsctl command does not terminate. This is generally solved by
having ovs-vswitchd running. If you face the issue despite that, hit Ctrl-C to terminate ovs-vsctl and check the output
to see if your command succeeded.

Validate that ports are added by dumping from both ovs-dpctl and ovs-vsctl:

> ovs—dpctl show
system@ovs—-system:
lookups: hit:0 missed:0 lost:0

flows: O
port 2: br-pif (internal) <<< internal port on 'br-pif' bridge
port 1l: br-int (internal) <<< internal port on 'br-int' bridge

> ovs-vsctl show
ab6ec7b5-5blf-49%9ec-a795-79f6eb63228b
Bridge br-pif
Port br-pif
Interface br-pif
type: internal
Bridge br-int
Port br-int
Interface br-int
type: internal

Note: There’s a known bug that the ports added to OVSDB via ovs-vsctl don’t get to the kernel datapath im-
mediately, ie. they don’t show up in the output of ovs—dpctl show even though they show up in output of

2.3. Installing Open vSwitch 21

Open vSwitch, Release 2.9.4

ovs—vsctl show. In order to workaround this issue, restart ovs-vswitchd. (You can terminate ovs-vswitchd by
running ovs—appctl exit.)

Add physicals NICs (PIF)

Now, let’s add the physical NIC and the internal port to br—pif. In OVS for Hyper-V, we use the name of the adapter
on top of which the Hyper-V virtual switch was created, as a special name to refer to the physical NICs connected to
the Hyper-V switch, e.g. if we created the Hyper-V virtual switch on top of the adapter named Et hernet O, then in
OVS we use that name (Ethernet0) as a special name to refer to that adapter.

Note: We assume that the OVS extension is enabled Hyper-V switch.

Internal ports are the virtual adapters created on the Hyper-V switch using the ovs-vsctl add-br <bridge>
command. By default they are created under the following rule “<name of bridge>" and the adapters are disabled.
One needs to enable them and set the corresponding values to it to make them IP-able.

As a whole example, if we issue the following in a powershell console:

PS > Get-NetAdapter | select Name, InterfaceDescription

Name InterfaceDescription

Ethernetl Intel (R) PRO/1000 MT Network Connection
br-pif Hyper-V Virtual Ethernet Adapter #2
EthernetO Intel (R) PRO/1000 MT Network Connection #2
br-int Hyper-V Virtual Ethernet Adapter #3

PS > Get-VMSwitch
Name SwitchType NetAdapterInterfaceDescription

external External Intel (R) PRO/1000 MT Network Connection #2

We can see that we have a switch(external) created upon adapter name ‘Ethernet()’” with the internal ports under name
‘br-pif” and ‘br-int’. Thus resulting into the following ovs-vsctl commands:

> ovs-vsctl add-port br-pif EthernetO

Dumping the ports should show the additional ports that were just added:

> ovs—dpctl show
system@ovs—-system:
lookups: hit:0 missed:0 lost:0
flows: O
port 2: br-pif (internal) <<< internal port
adapter on
Hyper-V switch
port 1: br-int (internal) <<< internal port
adapter on
Hyper-V switch
port 3: EthernetO <<< Physical NIC

> ovs-vsctl show
a56ec7b5-5b1f-49ec-a795-79f6eb63228b
Bridge br-pif
Port br-pif

(continues on next page)

22 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

(continued from previous page)

Interface br-pif
type: internal
Port "EthernetO"
Interface "EthernetO"
Bridge br-int
Port br-int
Interface br-int
type: internal

Add virtual interfaces (VIFs)

Adding VIFs to openvswitch is a two step procedure. The first step is to assign a ‘OVS port name’ which is a unique
name across all VIFs on this Hyper-V. The next step is to add the VIF to the ovsdb using its ‘OVS port name’ as key.

First, assign a unique ‘OVS port name’ to the VIF. The VIF needs to have been disconnected from the Hyper-V switch
before assigning a ‘OVS port name’ to it. In the example below, we assign a ‘OVS port name’ called ovs-port-a
to a VIF on a VM VM1. By using index O for $vnic, the first VIF of the VM is being addressed. After assigning
the name ovs—-port-—a, the VIF is connected back to the Hyper-V switch with name OVS—-HV-Switch, which is
assumed to be the Hyper-V switch with OVS extension enabled.:

PS > import-module .\datapath-windows\misc\OVS.psml

PS > $vnic = Get-VMNetworkAdapter <Name of the VM>

PS > Disconnect-VMNetworkAdapter -VMNetworkAdapter $vnic[O0]

PS > S$vnic[0] | Set-VMNetworkAdapterOVSPort -OVSPortName ovs-port-a
PS > Connect-VMNetworkAdapter -VMNetworkAdapter $vnic[0] \

-SwitchName OVS-Extended-Switch

Next, add the VIFs to br—-int:

> ovs-vsctl add-port br-int ovs-port-a

Dumping the ports should show the additional ports that were just added:

> ovs—dpctl show
system@ovs—-system:
lookups: hit:0 missed:0 lost:0

flows: O

port 4: ovs-port-a

port 2: br-pif (internal)
port 1: br-int (internal
port 3: EthernetO

> ovs-vsctl show
4cd86499-74df-48bd-a64d-8d115b12a9f2
Bridge br-pif
Port "vEthernet (external)"
Interface "vEthernet (external)"
Port "EthernetO"
Interface "EthernetO"
Port br-pif
Interface br-pif
type: internal
Bridge br-int
Port br-int
Interface br-int

(continues on next page)

2.3. Installing Open vSwitch 23

Open vSwitch, Release 2.9.4

(continued from previous page)

type: internal
Port "ovs-port-a"
Interface "ovs-port-a"

Add multiple NICs to be managed by OVS

To leverage support of multiple NICs into OVS, we will be using the MSFT cmdlets for forwarding team extension.
More documentation about them can be found at technet.

For example, to set up a switch team combined from Ethernet0 2 and Ethernetl 2 named external:

PS > Get-NetAdapter

Name InterfaceDescription

br-int Hyper-V Virtual Ethernet Adapter #3
br-pif Hyper-V Virtual Ethernet Adapter #2
Ethernet3 2 Intel(R) 82574L Gigabit Network Co...#3
Ethernet2 2 Intel (R) 82574L Gigabit Network Co...#4
Ethernetl 2 Intel (R) 82574L Gigabit Network Co...#2
Ethernet0 2 Intel (R) 82574L Gigabit Network Conn...

PS > New-NetSwitchTeam -Name external -TeamMembers "Ethernet(O 2","Ethernetl 2"

PS > Get-NetSwitchTeam
Name : external
Members : {Ethernetl 2, Ethernet(0 2}

This will result in a new adapter bound to the host called external:

PS > Get-NetAdapter

Name InterfaceDescription

br-test Hyper-V Virtual Ethernet Adapter #4
br-pif Hyper-V Virtual Ethernet Adapter #2
external Microsoft Network Adapter Multiplexo...
Ethernet3 2 Intel (R) 82574L Gigabit Network Co...#3
Ethernet2 2 Intel (R) 82574L Gigabit Network Co...#4
Ethernetl 2 Intel (R) 82574L Gigabit Network Co...#2
Ethernet0 2 Intel (R) 82574L Gigabit Network Conn...

Next we will set up the Hyper-V VMSwitch on the new adapter external:

PS > New-VMSwitch -Name external -NetAdapterName external \
-AllowManagementOS S$false

Under OVS the adapters under the team external, Ethernet0 2 andEthernetl 2,can be added either under
a bond device or separately.

The following example shows how the bridges look with the NICs being separated:

> ovs-vsctl show
6cd9481b-c249-4ee3-8692-97b399dd29d8
Bridge br-test
Port br-test
Interface br-test

(continues on next page)

24 Chapter 2. Getting Started

https://technet.microsoft.com/en-us/library/jj553812%28v=wps.630%29.aspx

Open vSwitch, Release 2.9.4

(continued from previous page)

type: internal
Port "Ethernetl 2"
Interface "Ethernetl 2"
Bridge br-pif
Port "EthernetO 2"
Interface "Ethernet0 2"
Port br-pif
Interface br-pif
type: internal

Add patch ports and configure VLAN tagging

The Windows Open vSwitch implementation support VLAN tagging in the switch. Switch VLAN tagging along with
patch ports between br—-int and br—pif is used to configure VLAN tagging functionality between two VMs on
different Hyper-Vs. To start, add a patch port from br—int to br—-pi f:

> ovs-vsctl add-port br-int patch-to-pif
> ovs-vsctl set interface patch-to-pif type=patch \
options:peer=patch-to-int

Add a patch port from br-pif to br—int:

> ovs-vsctl add-port br-pif patch-to-int
> ovs-vsctl set interface patch-to-int type=patch \
options:peer=patch-to-pif

Re-Add the VIF ports with the VLAN tag:

> ovs-vsctl add-port br-int ovs-port-a tag=900
> ovs-vsctl add-port br-int ovs-port-b tag=900

Add tunnels

The Windows Open vSwitch implementation support VXLAN and STT tunnels. To add tunnels. For example, first
add the tunnel port between 172.168.201.101 <-> 172.168.201.102:

ovs-vsctl add-port br-int tun-1

ovs—-vsctl set Interface tun-1 type=<port-type>

ovs-vsctl set Interface tun-1 options:local_ip=172.168.201.101
ovs-vsctl set Interface tun-1 options:remote_ip=172.168.201.102
ovs-vsctl set Interface tun-1 options:in_key=flow

ovs-vsctl set Interface tun-1 options:out_key=flow

vV V V V V V

..and the tunnel port between 172.168.201.101 <-> 172.168.201.105:

ovs-vsctl add-port br-int tun-2

ovs-vsctl set Interface tun-2 type=<port-type>

ovs-vsctl set Interface tun-2 options:local_ip=172.168.201.102
ovs-vsctl set Interface tun-2 options:remote_ip=172.168.201.105
ovs-vsctl set Interface tun-2 options:in_key=flow

ovs-vsctl set Interface tun-2 options:out_key=flow

vV V.V V V V

Where <port-type> is one of: stt or vxlan

2.3. Installing Open vSwitch 25

Open vSwitch, Release 2.9.4

Note: Any patch ports created between br-int and br-pif MUST be be deleted prior to adding tunnels.

Windows Services

Open vSwitch daemons come with support to run as a Windows service. The instructions here assume that you have
installed the Open vSwitch utilities and daemons viamake install.

To start, create the database:

> ovsdb-tool create C:/openvswitch/etc/openvswitch/conf.db \
"C:/openvswitch/usr/share/openvswitch/vswitch.ovsschema"

Create the ovsdb-server service and start it:

> sc create ovsdb-server \
binpath="C:/openvswitch/usr/sbin/ovsdb-server.exe \
C:/openvswitch/etc/openvswitch/conf.db \
-vfile:info —--log-file —-pidfile \
—-—-remote=punix:db.sock —--service --service-monitor"
> sc start ovsdb-server

Tip: One of the common issues with creating a Windows service is with mungled paths. You can make sure that the
correct path has been registered with the Windows services manager by running:

’> sc gc ovsdb-server

Check that the service is healthy by running:

’> sc query ovsdb-server

Initialize the database:

’> ovs-vsctl —-—no-wait init

Create the ovs-vswitchd service and start it:

> sc create ovs-vswitchd \
binpath="C:/openvswitch/usr/sbin/ovs-vswitchd.exe \
—--pidfile -vfile:info --log-file --service --service-monitor"
> sc start ovs-vswitchd

Check that the service is healthy by running:

> sc query ovs-vswitchd

To stop and delete the services, run:

sc stop ovs-vswitchd
sc stop ovsdb-server
sc delete ovs-vswitchd
sc delete ovsdb-server

vV V. V V

26 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

Windows CI Service

AppVeyor provides a free Windows autobuild service for opensource projects. Open vSwitch has integration with
AppVeyor for continuous build. A developer can build test his changes for Windows by logging into appveyor.com
using a github account, creating a new project by linking it to his development repository in github and triggering a
new build.

TODO

* Investigate the working of sFlow on Windows and re-enable the unit tests.
* Investigate and add the feature to provide QoS.

* Sign the driver & create an MSI for installing the different OpenvSwitch components on Windows.

Open vSwitch on Citrix XenServer
This document describes how to build and install Open vSwitch on a Citrix XenServer host. If you want to install
Open vSwitch on a generic Linux or BSD host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Open vSwitch should work with XenServer 5.6.100 and later. However, Open vSwitch requires Python 2.7 or later, so
using Open vSwitch with XenServer 6.5 or earlier requires installing Python 2.7.

Building
You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree. The recommended build

environment to build RPMs for Citrix XenServer is the DDK VM available from Citrix.

1. If you are building from an Open vSwitch Git tree, then you will need to first create a distribution tarball by
running:

$./boot.sh
$./configure
S make dist

You cannot run this in the DDK VM, because it lacks tools that are necessary to bootstrap the Open vSwitch
distribution. Instead, you must run this on a machine that has the tools listed in Installation Requirements as
prerequisites for building from a Git tree.

2. Copy the distribution tarball into /usr/src/redhat/SOURCES inside the DDK VM.

3. In the DDK VM, unpack the distribution tarball into a temporary directory and “cd” into the root of the distri-
bution tarball.

4. To build Open vSwitch userspace, run:

$ rpmbuild -bb xenserver/openvswitch-xen.spec

This produces three RPMs in /usr/src/redhat /RPMS/1i386:
* openvswitch
* openvswitch-modules-xen
e openvswitch-debuginfo

The above command automatically runs the Open vSwitch unit tests. To disable the unit tests, run:

2.3. Installing Open vSwitch 27

www.appveyor.com

Open vSwitch, Release 2.9.4

$ rpmbuild -bb --without check xenserver/openvswitch-xen.spec

Build Parameters

openvswitch-xen. spec needs to know a number of pieces of information about the XenServer kernel. Usually,
it can figure these out for itself, but if it does not do it correctly then you can specify them yourself as parameters to
the build. Thus, the final rpmbuild step above can be elaborated as:

VERSION=<Open vSwitch version>
KERNEL_NAME=<Xen Kernel name>
KERNEL_VERSION=<Xen Kernel version>
KERNEL_FLAVOR=<Xen Kernel flavor (suffix)>
rpmbuild \

-D "openvswitch_version $VERSION" \

-D "kernel_name SKERNEL_NAME" \

-D "kernel_version S$SKERNEL_VERSION" \

-D "kernel_flavor S$KERNEL_FLAVOR" \

-bb xenserver/openvswitch-xen.spec

Ly 0 r Uy

where:

<openvswitch version> is the version number that appears in the name of the Open vSwitch tarball, e.g.
0.90.0.

<Xen Kernel name> isthe name of the XenServer kernel package, e.g. kernel-xen or kernel -NAME-xen,
without the kernel- prefix.

<Xen Kernel version> is the output of:

$ rpm -g --queryformat "%{Version}-%{Release}" <kernel-devel-package>,

g 2.6.32.12-0.7.1.xs5.6.100.323.170596, where <kernel-devel-package> is the name
of the —~devel package corresponding to <Xen Kernel name>.

<Xen Kernel flavor (suffix)> iseither xen or kdump, where xen flavor is the main running kernel flavor
and the kdump flavor is the crashdump kernel flavor. Commonly, one would specify xen here.

For XenServer 6.5 or above, the kernel version naming no longer contains KERNEL_FLAVOR. In fact, only providing
the uname -—r output is enough. So, the final rpmbuild step changes to:

$ KERNEL_UNAME=<'uname -r output>

$ rpmbuild \
-D "kenel_uname SKERNEL_UNAME" \
-bb xenserver/openvswitch-xen.spec

Installing Open vSwitch for XenServer

To install Open vSwitch on a XenServer host, or to upgrade to a newer version, copy the openvswitch and
openvswitch-modules-xen RPMs to that host with scp, then install them with rpm -U, e.g.:

$ scp openvswitch-$VERSION-1.1386.rpm \
openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.1386.rpm \
root@<host>:

Enter <host>'s root password.

$ ssh root@<host>

(continues on next page)

28 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

(continued from previous page)

Enter <host>'s root password again.
$ rpm -U openvswitch-$VERSION-1.1i386.rpm \
openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.1386.rpm

To uninstall Open vSwitch from a XenServer host, remove the packages:

$ ssh root@<host>
Enter <host>'s root password again.
$ rpm —-e openvswitch openvswitch-modules—-xen—-$XEN_KERNEL_VERSION

After installing or uninstalling Open vSwitch, the XenServer should be rebooted as soon as possible.

Open vSwitch Boot Sequence on XenServer

When Open vSwitch is installed on XenServer, its startup script /etc/init.d/openvswitch runs early in boot.
It does roughly the following:

* Loads the OVS kernel module, openvswitch.
* Starts ovsdb-server, the OVS configuration database.

» XenServer expects there to be no bridges configured at startup, but the OVS configuration database likely still
has bridges configured from before reboot. To match XenServer expectations, the startup script deletes all
configured bridges from the database.

* Starts ovs-vswitchd, the OVS switching daemon.

At this point in the boot process, then, there are no Open vSwitch bridges, even though all of the Open vSwitch
daemons are running. Later on in boot, /etc/init.d/management—-interface (part of XenServer, not
Open vSwitch) creates the bridge for the XAPI management interface by invoking /opt /xensource/libexec/
interface-reconfigure. Normally this program consults XAPI’s database to obtain information about how
to configure the bridge, but XAPI is not running yet(*) so it instead consults /var/xapi/network.dbcache,
which is a cached copy of the most recent network configuration.

(*) Even if XAPI were running, if this XenServer node is a pool slave then the query would have to consult the
master, which requires network access, which begs the question of how to configure the management inter-
face.

XAPI starts later on in the boot process. XAPI can then create other bridges on demand using /opt /xensource/
libexec/interface-reconfigure. Now that XAPI is running, that program consults XAPI directly instead
of reading the cache.

As part of its own startup, XAPI invokes the Open vSwitch XAPI plugin script /etc/xapi.d/
openvswitch-cfg-update passing the update command. The plugin script does roughly the following:

e Calls /opt/xensource/libexec/interface-reconfigure with the rewrite command, to en-
sure that the network cache is up-to-date.

* Queries the Open vSwitch manager setting (named vswitch_controller) from the XAPI database for the
XenServer pool.

e If XAPI and OVS are configured for different managers, or if OVS is configured for a manager but XAPI is
not, runs ovs-vsctl emer-reset to bring the Open vSwitch configuration to a known state. One effect of
emer-reset is to deconfigure any manager from the OVS database.

o If XAPI is configured for a manager, configures the OVS manager to match with ovs-vsctl
set-manager.

2.3. Installing Open vSwitch 29

Open vSwitch, Release 2.9.4

Notes

* The Open vSwitch boot sequence only configures an OVS configuration database manager. There is no way to
directly configure an OpenFlow controller on XenServer and, as a consequence of the step above that deletes
all of the bridges at boot time, controller configuration only persists until XenServer reboot. The configuration
database manager can, however, configure controllers for bridges. See the BUGS section of ovs-testcontroller(8)
for more information on this topic.

e The Open vSwitch startup script automatically adds a firewall rule to allow GRE traffic. This rule is needed
for the XenServer feature called “Cross-Host Internal Networks” (CHIN) that uses GRE. If a user configures
tunnels other than GRE (ex: Geneve, VXLAN, LISP), they will have to either manually add a iptables firewall
rule to allow the tunnel traffic or add it through a startup script (Please refer to the “enable-protocol” command
in the ovs-ctl(8) manpage).

Reporting Bugs

Please report problems to bugs @openvswitch.org.

Open vSwitch without Kernel Support

Open vSwitch can operate, at a cost in performance, entirely in userspace, without assistance from a kernel module.
This file explains how to install Open vSwitch in such a mode.

This version of Open vSwitch should be built manually with configure and make. Debian packaging for Open
vSwitch is also included, but it has not been recently tested, and so Debian packages are not a recommended way to
use this version of Open vSwitch.

Warning: The userspace-only mode of Open vSwitch without DPDK is considered experimental. It has not been
thoroughly tested.

Building and Installing

The requirements and procedure for building, installing, and configuring Open vSwitch are the same as those given in
Open vSwitch on Linux, FreeBSD and NetBSD. You may omit configuring, building, and installing the kernel module,
and the related requirements.

On Linux, the userspace switch additionally requires the kernel TUN/TAP driver to be available, either built into the
kernel or loaded as a module. If you are not sure, check for a directory named /sys/class/misc/tun. If it does
not exist, then attempt to load the module with modprobe tun.

The tun device must also exist as /dev/net/tun. If it does not exist, then create /dev/net (if necessary) with
mkdir /dev/net, then create /dev/net/tun withmknod /dev/net/tun ¢ 10 200.

On FreeBSD and NetBSD, the userspace switch additionally requires the kernel tap(4) driver to be available, either
built into the kernel or loaded as a module.

Using the Userspace Datapath with ovs-vswitchd

To use ovs-vswitchd in userspace mode, create a bridge with datapath_type=netdev in the configuration
database. For example:

30 Chapter 2. Getting Started

mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

ovs—-vsctl add-br bro0

ovs-vsctl set bridge br0 datapath_type=netdev
ovs-vsctl add-port br0 ethO

ovs—-vsctl add-port br0 ethl

ovs-vsctl add-port br0 eth2

v Ay

ovs-vswitchd will create a TAP device as the bridge’s local interface, named the same as the bridge, as well as for each
configured internal interface.

Currently, on FreeBSD, the functionality required for in-band control support is not implemented. To avoid related
errors, you can disable the in-band support with the following command:

$ ovs-vsctl set bridge br0 other_config:disable-in-band=true

Firewall Rules

On Linux, when a physical interface is in use by the userspace datapath, packets received on the interface still also
pass into the kernel TCP/IP stack. This can cause surprising and incorrect behavior. You can use “iptables” to avoid
this behavior, by using it to drop received packets. For example, to drop packets received on ethQ:

$ iptables —-A INPUT -i ethO -j DROP
$ iptables -A FORWARD -i eth0 -j DROP

Other Settings

On NetBSD, depending on your network topology and applications, the following configuration might help. See
sysctl(7).:

$ sysctl -w net.inet.ip.checkinterface=1

Reporting Bugs

Report problems to bugs @openvswitch.org.

Open vSwitch with DPDK

This document describes how to build and install Open vSwitch using a DPDK datapath. Open vSwitch can use the
DPDK library to operate entirely in userspace.

See also:

The releases FAQ lists support for the required versions of DPDK for each version of Open vSwitch.

Build requirements

In addition to the requirements described in Open vSwitch on Linux, FreeBSD and NetBSD, building Open vSwitch
with DPDK will require the following:

* DPDK 17.11.4

2.3. Installing Open vSwitch 31

mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

* A DPDK supported NIC
Only required when physical ports are in use
* A suitable kernel

On Linux Distros running kernel version >= 3.0, only /IOMMU needs to enabled via the grub cmdline,
assuming you are using VFIO. For older kernels, ensure the kernel is built with UIO, HUGETLBFS,
PROC_PAGE_MONITOR, HPET, HPET_MMAP support. If these are not present, it will be necessary to up-
grade your kernel or build a custom kernel with these flags enabled.

Detailed system requirements can be found at DPDK requirements.

Installing
Install DPDK

1. Download the DPDK sources, extract the file and set DPDK_DIR:

cd /usr/src/

wget http://fast.dpdk.org/rel/dpdk-17.11.4.tar.xz
tar xf dpdk-17.11.4.tar.xz

export DPDK_DIR=/usr/src/dpdk-stable-17.11.4

cd $DPDK_DIR

v W U r

2. (Optional) Configure DPDK as a shared library

DPDK can be built as either a static library or a shared library. By default, it is configured for the for-
mer. If you wish to use the latter, set CONFIG_RTE_BUILD_SHARED_LIB=y in $DPDK_DIR/config/
common_base.

Note: Minor performance loss is expected when using OVS with a shared DPDK library compared to a static
DPDK library.

3. Configure and install DPDK
Build and install the DPDK library:

$ export DPDK_TARGET=x86_64-native-linuxapp-gcc
$ export DPDK_BUILD=$DPDK_DIR/S$DPDK_TARGET
$ make install T=$DPDK_TARGET DESTDIR=install

4. (Optional) Export the DPDK shared library location
If DPDK was built as a shared library, export the path to this library for use when building OVS:

$ export LD_LIBRARY_ PATH=S$DPDK_DIR/x86_64-native-linuxapp—-gcc/lib

Install OVS

OVS can be installed using different methods. For OVS to use DPDK datapath, it has to be configured with DPDK
support (——with-dpdk).

32 Chapter 2. Getting Started

http://dpdk.org/doc/nics
http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html
http://dpdk.org/rel

Open vSwitch, Release 2.9.4

Note: This section focuses on generic recipe that suits most cases. For distribution specific instructions, refer to one
of the more relevant guides.

1. Ensure the standard OVS requirements, described in Build Requirements, are installed
2. Bootstrap, if required, as described in Bootstrapping

3. Configure the package using the ——with-dpdk flag:

$./configure --with-dpdk=$DPDK_BUILD

where DPDK_BUILD is the path to the built DPDK library. This can be skipped if DPDK library is installed in
its default location.

If no path is provided to ——with-dpdk, but a pkg-config configuration for libdpdk is available the include
paths will be generated via an equivalent pkg-config --cflags libdpdk.

Note: While —-with-dpdk is required, you can pass any other configuration option described in Configuring.

4. Build and install OVS, as described in Building

Additional information can be found in Open vSwitch on Linux, FreeBSD and NetBSD.

Note: If you are running using the Fedora or Red Hat package, the Open vSwitch daemon will run as a non-root user.
This implies that you must have a working IOMMU. Visit the RHEL README for additional information.

Setup
Setup Hugepages

Allocate a number of 2M Huge pages:

* For persistent allocation of huge pages, write to hugepages.conf file in /etc/sysctl.d:

’$ echo 'vm.nr_hugepages=2048' > /etc/sysctl.d/hugepages.conf

* For run-time allocation of huge pages, use the sysct1 utility:

’$ sysctl -w vm.nr_hugepages=N # where N = No. of 2M huge pages

To verify hugepage configuration:

’$ grep HugePages_ /proc/meminfo ‘

Mount the hugepages, if not already mounted by default:

’$ mount -t hugetlbfs none /dev/hugepages '

2.3. Installing Open vSwitch 33

https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst

Open vSwitch, Release 2.9.4

Setup DPDK devices using VFIO

VFIO is prefered to the UIO driver when using recent versions of DPDK. VFIO support required support from both
the kernel and BIOS. For the former, kernel version > 3.6 must be used. For the latter, you must enable VT-d in the
BIOS and ensure this is configured via grub. To ensure VT-d is enabled via the BIOS, run:

$ dmesg | grep —e DMAR -e IOMMU

If VT-d is not enabled in the BIOS, enable it now.

To ensure VT-d is enabled in the kernel, run:

$ cat /proc/cmdline | grep iommu=pt
$ cat /proc/cmdline | grep intel_iommu=on

If VT-d is not enabled in the kernel, enable it now.

Once VT-d is correctly configured, load the required modules and bind the NIC to the VFIO driver:

modprobe vfio-pci

/usr/bin/chmod a+x /dev/vfio

/usr/bin/chmod 0666 /dev/vfio/*
$SDPDK_DIR/usertools/dpdk-devbind.py --bind=vfio-pci ethl
$DPDK_DIR/usertools/dpdk-devbind.py —--status

v W

Setup OVS

Open vSwitch should be started as described in Open vSwitch on Linux, FreeBSD and NetBSD with the exception of
ovs-vswitchd, which requires some special configuration to enable DPDK functionality. DPDK configuration argu-
ments can be passed to ovs-vswitchd via the other_config column of the Open_vSwitch table. At a minimum,
the dpdk—init option must be set to t rue. For example:

export PATH=$PATH:/usr/local/share/openvswitch/scripts

export DB_SOCK=/usr/local/var/run/openvswitch/db.sock

ovs-vsctl —--no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs—-ctl ——no-ovsdb-server —--db-sock="$DB_SOCK" start

Uy Ay

There are many other configuration options, the most important of which are listed below. Defaults will be provided
for all values not explicitly set.

dpdk-init Specifies whether OVS should initialize and support DPDK ports. This is a boolean, and defaults to
false.

dpdk-lcore-mask Specifies the CPU cores on which dpdk Icore threads should be spawned and expects hex string
(eg ‘0x123").

dpdk-socket—-mem Comma separated list of memory to pre-allocate from hugepages on specific sockets.
dpdk-hugepage-dir Directory where hugetlbfs is mounted
vhost-sock—dir Option to set the path to the vhost-user unix socket files.

If allocating more than one GB hugepage, you can configure the amount of memory used from any given NUMA
nodes. For example, to use 1GB from NUMA node 0 and 0GB for all other NUMA nodes, run:

$ ovs-vsctl —--no-wait set Open_vSwitch . \
other_config:dpdk-socket-mem="1024,0"

34 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

or:

$ ovs-vsctl —--no-wait set Open_vSwitch . \
other_config:dpdk-socket-mem="1024"

Note: Changing any of these options requires restarting the ovs-vswitchd application

See the section Performance Tuning for important DPDK customizations.

Validating

At this point you can use ovs-vsctl to set up bridges and other Open vSwitch features. Seeing as we’ve configured the
DPDK datapath, we will use DPDK-type ports. For example, to create a userspace bridge named br0 and add two
dpdk ports to it, run:

$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

$ ovs-vsctl add-port br0 myportnameone —-- set Interface myportnameone \
type=dpdk options:dpdk-devargs=0000:06:00.0

$ ovs-vsctl add-port br0 myportnametwo —-- set Interface myportnametwo \

type=dpdk options:dpdk-devargs=0000:06:00.1

DPDK devices will not be available for use until a valid dpdk-devargs is specified.

Refer to ovs-vsctl(8) and Using Open vSwitch with DPDK for more details.

Performance Tuning

To achieve optimal OVS performance, the system can be configured and that includes BIOS tweaks, Grub cmdline
additions, better understanding of NUMA nodes and apt selection of PCle slots for NIC placement.

Note: This section is optional. Once installed as described above, OVS with DPDK will work out of the box.

Recommended BIOS Settings

Table 1: Recommended BIOS Settings

Setting Value

C3 Power State Disabled

C6 Power State Disabled
MLC Streamer Enabled
MLC Spacial Prefetcher Enabled
DCU Data Prefetcher Enabled
DCA Enabled
CPU Power and Performance Performance
Memeory RAS and Performance Config -> NUMA optimized | Enabled

2.3. Installing Open vSwitch 35

Open vSwitch, Release 2.9.4

PCle Slot Selection

The fastpath performance can be affected by factors related to the placement of the NIC, such as channel speeds
between PCle slot and CPU or the proximity of PCle slot to the CPU cores running the DPDK application. Listed
below are the steps to identify right PCle slot.

1. Retrieve host details using dmidecode. For example:

$ dmidecode -t baseboard | grep "Product Name"

2. Download the technical specification for product listed, e.g: S2600WT2

3. Check the Product Architecture Overview on the Riser slot placement, CPU sharing info and also PCle channel
speeds

For example: On S2600WT, CPU1 and CPU2 share Riser Slot 1 with Channel speed between CPU1 and Riser
Slot1 at 32GB/s, CPU2 and Riser Slotl at 16GB/s. Running DPDK app on CPU1 cores and NIC inserted in to
Riser card Slots will optimize OVS performance in this case.

4. Check the Riser Card #1 - Root Port mapping information, on the available slots and individual bus speeds. In
S2600WT slot 1, slot 2 has high bus speeds and are potential slots for NIC placement.

Advanced Hugepage Setup

Allocate and mount 1 GB hugepages.

* For persistent allocation of huge pages, add the following options to the kernel bootline:

’default_hugepageszzlGB hugepagesz=1G hugepages=N

For platforms supporting multiple huge page sizes, add multiple options:

’default_hugepagesz:<size> hugepagesz=<size> hugepages=N

where:
N number of huge pages requested
size huge page size with an optional suffix [kKmMgG]

¢ For run-time allocation of huge pages:

$ echo N > /sys/devices/system/node/nodeX/hugepages/hugepages-1048576kB/nr_
—hugepages

where:
N number of huge pages requested

X NUMA Node

Note: For run-time allocation of 1G huge pages, Contiguous Memory Allocator (CONFIG_CMA) has to be
supported by kernel, check your Linux distro.

Now mount the huge pages, if not already done so:

$ mount -t hugetlbfs -o pagesize=1G none /dev/hugepages

36 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

Isolate Cores

The isolcpus option can be used to isolate cores from the Linux scheduler. The isolated cores can then be used
to dedicatedly run HPC applications or threads. This helps in better application performance due to zero context
switching and minimal cache thrashing. To run platform logic on core 0 and isolate cores between 1 and 19 from
scheduler, add i solcpus=1-19 to GRUB cmdline.

Note: It has been verified that core isolation has minimal advantage due to mature Linux scheduler in some circum-
stances.

Compiler Optimizations

The default compiler optimization level is —~02. Changing this to more aggressive compiler optimization such
as —03 -march=native with gcc (verified on 5.3.1) can produce performance gains though not siginificant.
-march=native will produce optimized code on local machine and should be used when software compilation
is done on Testbed.

Multiple Poll-Mode Driver Threads

With pmd multi-threading support, OVS creates one pmd thread for each NUMA node by default, if there is at least
one DPDK interface from that NUMA node added to OVS. However, in cases where there are multiple ports/rxq’s
producing traffic, performance can be improved by creating multiple pmd threads running on separate cores. These
pmd threads can share the workload by each being responsible for different ports/rxq’s. Assignment of ports/rxq’s to
pmd threads is done automatically.

A set bit in the mask means a pmd thread is created and pinned to the corresponding CPU core. For example, to run
pmd threads on core 1 and 2:

’$ ovs—-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x6

When using dpdk and dpdkvhostuser ports in a bi-directional VM loopback as shown below, spreading the workload
over 2 or 4 pmd threads shows significant improvements as there will be more total CPU occupancy available:

’NIC port0 <-> QOVS <-> VM <-> OVS <-> NIC port 1

Refer to ovs-vswitchd.conf.db(5) for additional information on configuration options.

Affinity

For superior performance, DPDK pmd threads and Qemu vCPU threads needs to be affinitized accordingly.
* PMD thread Affinity

A poll mode driver (pmd) thread handles the I/O of all DPDK interfaces assigned to it. A pmd thread shall poll
the ports for incoming packets, switch the packets and send to tx port. A pmd thread is CPU bound, and needs
to be affinitized to isolated cores for optimum performance. Even though a PMD thread may exist, the thread
only starts consuming CPU cycles if there is at least one receive queue assigned to the pmd.

Note: On NUMA systems, PCI devices are also local to a NUMA node. Unbound rx queues for a PCI device
will be assigned to a pmd on it’s local NUMA node if a non-isolated PMD exists on that NUMA node. If not, the
queue will be assigned to a non-isolated pmd on a remote NUMA node. This will result in reduced maximum

2.3. Installing Open vSwitch 37

Open vSwitch, Release 2.9.4

throughput on that device and possibly on other devices assigned to that pmd thread. If such a queue assignment
is made a warning message will be logged: “There’s no available (non-isolated) pmd thread on numa node N.
Queue Q on port P will be assigned to the pmd on core C (numa node N’). Expect reduced performance.”

Binding PMD threads to cores is described in the above section Multiple Poll-Mode Driver
Threads.

* QEMU vCPU thread Affinity

A VM performing simple packet forwarding or running complex packet pipelines has to ensure that the vCPU
threads performing the work has as much CPU occupancy as possible.

For example, on a multicore VM, multiple QEMU vCPU threads shall be spawned. When the DPDK testpmd
application that does packet forwarding is invoked, the taskset command should be used to affinitize the
vCPU threads to the dedicated isolated cores on the host system.

Enable HyperThreading

With HyperThreading, or SMT, enabled, a physical core appears as two logical cores. SMT can be utilized to spawn
worker threads on logical cores of the same physical core there by saving additional cores.

With DPDK, when pinning pmd threads to logical cores, care must be taken to set the correct bits of the
pmd-cpu-mask to ensure that the pmd threads are pinned to SMT siblings.

Take a sample system configuration, with 2 sockets, 2 * 10 core processors, HT enabled. This gives us a total of 40
logical cores. To identify the physical core shared by two logical cores, run:

$ cat /sys/devices/system/cpu/cpuN/topology/thread_siblings_list

where N is the logical core number.

In this example, it would show that cores 1 and 21 share the same physical core. Logical cores can be specified in
pmd-cpu-masks similarly to physical cores, as described in Multiple Poll-Mode Driver Threads.

NUMA/Cluster-on-Die

Ideally inter-NUMA datapaths should be avoided where possible as packets will go across QPI and there may be a
slight performance penalty when compared with intra NUMA datapaths. On Intel Xeon Processor ES v3, Cluster On
Die is introduced on models that have 10 cores or more. This makes it possible to logically split a socket into two
NUMA regions and again it is preferred where possible to keep critical datapaths within the one cluster.

It is good practice to ensure that threads that are in the datapath are pinned to cores in the same
NUMA area. e.g. pmd threads and QEMU vCPUs responsible for forwarding. If DPDK is built with
CONFIG_RTE_LIBRTE_VHOST_NUMA=y, vHost User ports automatically detect the NUMA socket of the QEMU
vCPUs and will be serviced by a PMD from the same node provided a core on this node is enabled in the
pmd-cpu-mask. libnuma packages are required for this feature.

Binding PMD threads is described in the above section Multiple Poll-Mode Driver Threads.

DPDK Physical Port Rx Queues

$ ovs-vsctl set Interface <DPDK interface> options:n_rxg=<integer>

The above command sets the number of rx queues for DPDK physical interface. The rx queues are assigned to pmd
threads on the same NUMA node in a round-robin fashion.

38 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

DPDK Physical Port Queue Sizes

$ ovs-vsctl set Interface dpdk0 options:n_rxq desc=<integer>
$ ovs-vsctl set Interface dpdk0 options:n_txqg desc=<integer>

The above command sets the number of rx/tx descriptors that the NIC associated with dpdk0 will be initialised with.

Different n_rxqg_desc and n_txqg_desc configurations yield different benefits in terms of throughput and latency
for different scenarios. Generally, smaller queue sizes can have a positive impact for latency at the expense of through-
put. The opposite is often true for larger queue sizes. Note: increasing the number of rx descriptors eg. to 4096 may
have a negative impact on performance due to the fact that non-vectorised DPDK rx functions may be used. This is
dependent on the driver in use, but is true for the commonly used i40e and ixgbe DPDK drivers.

Exact Match Cache

Each pmd thread contains one Exact Match Cache (EMC). After initial flow setup in the datapath, the EMC con-
tains a single table and provides the lowest level (fastest) switching for DPDK ports. If there is a miss in the EMC
then the next level where switching will occur is the datapath classifier. Missing in the EMC and looking up in the
datapath classifier incurs a significant performance penalty. If lookup misses occur in the EMC because it is too
small to handle the number of flows, its size can be increased. The EMC size can be modified by editing the define
EM_FLOW_HASH_SHIFTIin lib/dpif-netdev.c.

As mentioned above, an EMC is per pmd thread. An alternative way of increasing the aggregate amount of possible
flow entries in EMC and avoiding datapath classifier lookups is to have multiple pmd threads running.

Rx Mergeable Buffers

Rx mergeable buffers is a virtio feature that allows chaining of multiple virtio descriptors to handle large packet sizes.
Large packets are handled by reserving and chaining multiple free descriptors together. Mergeable buffer support is
negotiated between the virtio driver and virtio device and is supported by the DPDK vhost library. This behavior is
supported and enabled by default, however in the case where the user knows that rx mergeable buffers are not needed
i.e. jumbo frames are not needed, it can be forced off by adding mrg_rxbuf=off to the QEMU command line
options. By not reserving multiple chains of descriptors it will make more individual virtio descriptors available for rx
to the guest using dpdkvhost ports and this can improve performance.

Output Packet Batching

To make advantage of batched transmit functions, OVS collects packets in intermediate queues before sending when
processing a batch of received packets. Even if packets are matched by different flows, OVS uses a single send
operation for all packets destined to the same output port.

Furthermore, OVS is able to buffer packets in these intermediate queues for a configurable amount of time to reduce
the frequency of send bursts at medium load levels when the packet receive rate is high, but the receive batch size still
very small. This is particularly beneficial for packets transmitted to VMs using an interrupt-driven virtio driver, where
the interrupt overhead is significant for the OVS PMD, the host operating system and the guest driver.

The tx—flush-interval parameter can be used to specify the time in microseconds OVS should wait between
two send bursts to a given port (default is 0). When the intermediate queue fills up before that time is over, the buffered
packet batch is sent immediately:

$ ovs-vsctl set Open_vSwitch . other_config:tx—-flush-interval=50

2.3. Installing Open vSwitch 39

Open vSwitch, Release 2.9.4

This parameter influences both throughput and latency, depending on the traffic load on the port. In general lower
values decrease latency while higher values may be useful to achieve higher throughput.

Low traffic (packet rate < 1 / tx-flush-interval) should not experience any significant latency or
throughput increase as packets are forwarded immediately.

At intermediate load levels (1 / tx-flush-interval < packet rate < 32 /
tx—-flush-interval) traffic should experience an average latency increase of up to 1 / 2 =
tx-flush-interval and a possible throughput improvement.

Very high traffic (packet rate >> 32 / tx-flush-interval) should experience the average latency in-
creaseequalto 32 / (2 * packet rate).Mostsend batches in this case will contain the maximum number of
packets (32).

A tx-burst—-interval value of 50 microseconds has shown to provide a good performance increase in a
PHY-VM-PHY scenario on x86 system for interrupt-driven guests while keeping the latency increase at a reason-
able level:

https://mail.openvswitch.org/pipermail/ovs-dev/2017-December/341628.html

Note: Throughput impact of this option significantly depends on the scenario and the traffic patterns. For example:
tx-burst-interval value of 50 microseconds shows performance degradation in PHY-VM-PHY with bonded
PHY scenario while testing with 256 - 1024 packet flows:

https://mail.openvswitch.org/pipermail/ovs-dev/2017-December/341700.html

The average number of packets per output batch can be checked in PMD stats:

$ ovs—appctl dpif-netdev/pmd-stats—-show

Link State Change (LSC) detection configuration

There are two methods to get the information when Link State Change (LSC) happens on a network interface: by
polling or interrupt.

Configuring the Isc detection mode has no direct effect on OVS itself, instead it configures the NIC how it should
handle link state changes. Processing the link state update request triggered by OVS takes less time using interrupt
mode, since the NIC updates its link state in the background, while in polling mode the link state has to be fetched
from the firmware every time to fulfil this request.

Note that not all PMD drivers support LSC interrupts.

The default configuration is polling mode. To set interrupt mode, option dpdk—1sc—interrupt has to be set to
true.

Command to set interrupt mode for a specific interface:: $ ovs-vsctl set interface <iface_name> options:dpdk-Isc-
interrupt=true

Command to set polling mode for a specific interface:: $ ovs-vsctl set interface <iface_name> options:dpdk-Isc-
interrupt=false

Limitations

¢ Currently DPDK ports does not use HW offload functionality.

40 Chapter 2. Getting Started

https://mail.openvswitch.org/pipermail/ovs-dev/2017-December/341628.html
https://mail.openvswitch.org/pipermail/ovs-dev/2017-December/341700.html

Open vSwitch, Release 2.9.4

* Network Interface Firmware requirements: Each release of DPDK is validated against a specific firmware ver-
sion for a supported Network Interface. New firmware versions introduce bug fixes, performance improvements
and new functionality that DPDK leverages. The validated firmware versions are available as part of the re-
lease notes for DPDK. It is recommended that users update Network Interface firmware to match what has been
validated for the DPDK release.

The latest list of validated firmware versions can be found in the DPDK release notes.

» Upper bound MTU: DPDK device drivers differ in how the L2 frame for a given MTU value is calculated e.g.
i40e driver includes 2 x vlan headers in MTU overhead, em driver includes 1 x vlan header, ixgbe driver does
not include a vlan header in overhead. Currently it is not possible for OVS DPDK to know what upper bound
MTU value is supported for a given device. As such OVS DPDK must provision for the case where the L2 frame
for a given MTU includes 2 x vlan headers. This reduces the upper bound MTU value for devices that do not
include vlan headers in their L2 frames by 8 bytes e.g. ixgbe devices upper bound MTU is reduced from 9710
to 9702. This work around is temporary and is expected to be removed once a method is provided by DPDK to
query the upper bound MTU value for a given device.

Reporting Bugs

Report problems to bugs @openvswitch.org.

2.3.2 Installation from Packages

Open vSwitch is packaged on a variety of distributions. The tooling required to build these packages is included in the
Open vSwitch tree. The instructions are provided below.

Distributions packaging Open vSwitch

This document lists various popular distributions packaging Open vSwitch. Open vSwitch is packaged by various
distributions for multiple platforms and architectures.

Note: The packaged version available with distributions may not be latest Open vSwitch release.

Debian

You can use apt—get or aptitude to install the .deb packages and must be superuser.

1. Debian has openvswitch-switch and openvswitch-common .deb packages that includes the core
userspace components of the switch.

2. For kernel datapath, openvswitch-datapath-dkms can be installed to automatically build and install Open
vSwitch kernel module for your running kernel.

3. For DPDK datapath, Open vSwitch with DPDK support is bundled in the package
openvswitch-switch-dpdk.

Fedora

Fedora provides openvswitch, openvswitch-devel, openvswitch-test and
openvswitch-debuginfo rpm packages. You can install openvswitch package in minimum installa-
tion. Use yum or dnf to install the rpm packages and must be superuser.

2.3. Installing Open vSwitch 41

http://dpdk.org/doc/guides/rel_notes/release_17_11.html
mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

Red Hat

RHEL distributes openvswitch rpm package that supports kernel datapath. DPDK accelerated Open vSwitch can
be installed using openvswitch-dpdk package.

OpenSuSE

OpenSUSE provides openvswitch, openvswitch-switch rpm packages. Also openvswitch-dpdk and
openvswitch-dpdk-switch can be installed for Open vSwitch using DPDK accelerated datapath.

Debian Packaging for Open vSwitch

This document describes how to build Debian packages for Open vSwitch. To install Open vSwitch on Debian without
building Debian packages, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Note: These instructions should also work on Ubuntu and other Debian derivative distributions.

Before You Begin

Before you begin, consider whether you really need to build packages yourself. Debian “wheezy” and “sid”, as well
as recent versions of Ubuntu, contain pre-built Debian packages for Open vSwitch. It is easier to install these than to
build your own. To use packages from your distribution, skip ahead to “Installing .deb Packages”, below.

Building Open vSwitch Debian packages

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree with these instructions.
You do not need to be the superuser to build the Debian packages.

1. Install the “build-essential” and “fakeroot” packages. For example:

$ apt—-get install build-essential fakeroot

2. Obtain and unpack an Open vSwitch source distribution and cd into its top level directory.

3. Install the build dependencies listed under “Build-Depends:” near the top of debian/control. You can
install these any way you like, e.g. with apt—get install.

Check your work by running dpkg—checkbuilddeps in the top level of your ovs directory. If you’ve installed
all the dependencies properly, dpkg—-checkbuilddeps will exit without printing anything. If you forgot to install
some dependencies, it will tell you which ones.

4. Build the package:

’$ fakeroot debian/rules binary

This will do a serial build that runs the unit tests. This will take approximately 8 to 10 minutes. If you prefer,
you can run a faster parallel build:

’$ DEB_BUILD_OPTIONS='parallel=8' fakeroot debian/rules binary

If you are in a big hurry, you can even skip the unit tests:

42 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

$ DEB_BUILD_OPTIONS='parallel=8 nocheck' fakeroot debian/rules binary

Note: There are a few pitfalls in the Debian packaging building system so that, occasionally, you may find that in a
tree that you have using for a while, the build command above exits immediately without actually building anything.
To fix the problem, run:

$ fakeroot debian/rules clean

or start over from a fresh copy of the source tree.

5. The generated .deb files will be in the parent directory of the Open vSwitch source distribution.

Installing .deb Packages

These instructions apply to installing from Debian packages that you built yourself, as described in the previous
section. In this case, use a command such as dpkg -1i to install the .deb files that you build. You will have to
manually install any missing dependencies.

You can also use these instruction to install from packages provided by Debian or a Debian derivative distribution
such as Ubuntu. In this case, use a program such as apt—get or aptitude to download and install the provided
packages. These programs will also automatically download and install any missing dependencies.

Important: You must be superuser to install Debian packages.

1. Start by installing an Open vSwitch kernel module. See debian/openvswitch-switch.README.
Debian for the available options.

2. Install the openvswitch-switch and openvswitch-common packages. These packages include the
core userspace components of the switch.

Open vSwitch . deb packages not mentioned above are rarely useful. Refer to their individual package descriptions
to find out whether any of them are useful to you.

Reporting Bugs

Report problems to bugs @openvswitch.org.

Fedora, RHEL 7.x Packaging for Open vSwitch

This document provides instructions for building and installing Open vSwitch RPM packages on a Fedora Linux host.
Instructions for the installation of Open vSwitch on a Fedora Linux host without using RPM packages can be found in
the Open vSwitch on Linux, FreeBSD and NetBSD.

These instructions have been tested with Fedora 23, and are also applicable for RHEL 7.x and its derivatives, including
CentOS 7.x and Scientific Linux 7.x.

Build Requirements

You will need to install all required packages to build the RPMs. Newer distributions use dnf but if it’s not available,
then use yum instructions.

2.3. Installing Open vSwitch 43

mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

The command below will install RPM tools and generic build dependencies. And (optionally) include these packages:
libcap-ng libcap-ng-devel dpdk-devel.

DNF:

’$ dnf install @'Development Tools' rpm-build dnf-plugins-core

YUM:

’$ yum install @'Development Tools' rpm-build yum-utils

Then it is necessary to install Open vSwitch specific build dependencies. The dependencies are listed in the SPEC file,
but first it is necessary to replace the VERSION tag to be a valid SPEC.

The command below will create a temporary SPEC file:

$ sed -e 's/Q@VERSION@/0.0.1/' rhel/openvswitch-fedora.spec.in \
> /tmp/ovs.spec

And to install specific dependencies, use the corresponding tool below. For some of the dependencies on RHEL you
may need to add two additional repositories to help yum-builddep, e.g.:

$ subscription-manager repos --enable=rhel-7-server—-extras-rpms
$ subscription-manager repos --enable=rhel-7-server-optional-rpms
DNF:

’$ dnf builddep /tmp/ovs.spec

YUM:

’$ yum-builddep /tmp/ovs.spec

Once that is completed, remove the file /tmp/ovs. spec.

Bootstraping

Refer to Bootstrapping.

Configuring

Refer to Configuring.

Building

User Space RPMs

To build Open vSwitch user-space RPMs, execute the following from the directory in which ./configure was executed:

$ make rpm-fedora

This will create the RPMs openvswitch, python-openvswitch, openvswitch-test, openvswitch-devel, openvswitch-
ovn-common, openvswitch-ovn-central, openvswitch-ovn-host, openvswitch-ovn-vtep, openvswitch-ovn-docker, and
openvswitch-debuginfo.

44 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

To enable DPDK support in the openvswitch package, the ——with dpdk option can be added:

’$ make rpm-fedora RPMBUILD_OPT="--with dpdk --without check"

You can also have the above commands automatically run the Open vSwitch unit tests. This can take several minutes.

’$ make rpm-fedora RPMBUILD_OPT="--with check"

|

Kernel OVS Tree Datapath RPM

To build the Open vSwitch kernel module for the currently running kernel version, run:

$ make rpm-fedora-kmod

To build the Open vSwitch kernel module for another kernel version, the desired kernel version can be specified via
the kversion macro. For example:

$ make rpm-fedora-kmod \
RPMBUILD_OPT='-D "kversion 4.3.4-300.fc23.x86_64""

Installing

RPM packages can be installed by using the command rpm -1i. Package installation requires superuser privileges.

The openvswitch-kmod RPM should be installed first if the Linux OVS tree datapath module is to be used. The
openvswitch-kmod RPM should not be installed if only the in-tree Linux datapath or user-space datapath is needed.
Refer to the Open vSwitch FAQ for more information about the various Open vSwitch datapath options.

In most cases only the openvswitch RPM will need to be installed. The python-openvswitch, openvswitch-test,
openvswitch-devel, and openvswitch-debuginfo RPMs are optional unless required for a specific purpose.

The openvswitch-ovn-* packages are only needed when using OVN.

Refer to the RHEL. README for additional usage and configuration information.

Reporting Bugs

Report problems to bugs @openvswitch.org.

RHEL 5.6, 6.x Packaging for Open vSwitch

This document describes how to build and install Open vSwitch on a Red Hat Enterprise Linux (RHEL) host. If you
want to install Open vSwitch on a generic Linux host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.
We have tested these instructions with RHEL 5.6 and RHEL 6.0.

For RHEL 7.x (or derivatives, such as CentOS 7.x), you should follow the instructions in the Fedora, RHEL 7.x
Packaging for Open vSwitch. The Fedora spec files are used for RHEL 7.x.

2.3. Installing Open vSwitch 45

https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst
mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

Prerequisites

You may build from an Open vSwitch distribution tarball or from an Open vSwitch Git tree.
The default RPM build directory, _topdir, has five directories in the top-level.

BUILD/ where the software is unpacked and built

RPMS/ where the newly created binary package files are written

SOURCES/ contains the original sources, patches, and icon files

SPECS/ contains the spec files for each package to be built

SRPMS/ where the newly created source package files are written

Before you begin, note the RPM sources directory on your version of RHEL. The command rpmbuild
——showrc will show the configuration for each of those directories. Alternatively, the command rpm --eval
'${_topdir}"' shows the current configuration for the top level directory and the command rpm —--eval
'%${_sourcedir}' does the same for the sources directory. On RHEL 5, the default RPM _topdir is /usr/
src/redhat and the default RPM sources directory is /usr/src/redhat/SOURCES. On RHEL 6, the default
_topdiris $HOME/rpmbuild and the default RPM sources directory is SHOME / rpmbuild/SOURCES.

Build Requirements

You will need to install all required packages to build the RPMs. The command below will install RPM tools and
generic build dependencies:

$ yum install @'Development Tools' rpm-build yum-utils

Then it is necessary to install Open vSwitch specific build dependencies. The dependencies are listed in the SPEC file,
but first it is necessary to replace the VERSION tag to be a valid SPEC.

The command below will create a temporary SPEC file:

’$ sed —-e 's/Q@VERSION@/0.0.1/' rhel/openvswitch.spec.in > /tmp/ovs.spec

And to install specific dependencies, use yum-builddep tool:

’$ yum-builddep /tmp/ovs.spec

Once that is completed, remove the file /tmp/ovs. spec.
If python-sphinx package is not available in your version of RHEL, you can install it via pip with ‘pip install sphinx’.

Open vSwitch requires python 2.7 or newer which is not available in older distributions. In the case of RHEL 6.x and
its derivatives, one option is to install python34 and python34-six from EPEL.

Bootstrapping and Configuring

If you are building from a distribution tarball, skip to Building. If not, you must be building from an Open vSwitch Git
tree. Determine what version of Autoconf is installed (e.g. run autoconf --version). Ifitis not at least version
2.63, then you must upgrade or use another machine to build the packages.

Assuming all requirements have been met, build the tarball by running:

46 Chapter 2. Getting Started

https://fedoraproject.org/wiki/EPEL

Open vSwitch, Release 2.9.4

$./boot.sh
$./configure
$ make dist

You must run this on a machine that has the tools listed in Build Requirements as prerequisites for building from a Git
tree. Afterward, proceed with the rest of the instructions using the distribution tarball.

Now you have a distribution tarball, named something like openvswitch-x.y.z.tar.gz. Copy this file into the
RPM sources directory, e.g.:

$ cp openvswitch-x.y.z.tar.gz S$HOME/rpmbuild/SOURCES

Broken build symlink

Some versions of the RHEL 6 kernel-devel package contain a broken build symlink. If you are using such a version,
you must fix the problem before continuing.

To find out whether you are affected, run:

$ cd /lib/modules/<version>
$ 1s -1 build/

where <version> is the version number of the RHEL 6 kernel.

Note: The trailing slash in the final command is important. Be sure to include it.

If the 1s command produces a directory listing, your kernel-devel package is OK. If it produces a No such file
or directory error, your kernel-devel package is buggy.

If your kernel-devel package is buggy, then you can fix it with:

$ cd /lib/modules/<version>
$ rm build
$ 1n -s /usr/src/kernels/<target> build

where <target> is the name of an existing directory under /usr/src/kernels, whose name should be similar
to <version> but may contain some extra parts. Once you have done this, verify the fix with the same procedure
you used above to check for the problem.

Building

You should have a distribution tarball named something like openvswitch-x.y.z.tar.gz. Copy this file into the RPM
sources directory:

$ cp openvswitch-x.y.z.tar.gz S$HOME/rpmbuild/SOURCES

Make another copy of the distribution tarball in a temporary directory. Then unpack the tarball and cd into its root:

$ tar xzf openvswitch-x.y.z.tar.gz
$ cd openvswitch-x.y.z

2.3. Installing Open vSwitch 47

Open vSwitch, Release 2.9.4

Userspace

To build Open vSwitch userspace, run:

’$ rpmbuild -bb rhel/openvswitch.spec

This produces two RPMs: “openvswitch” and “openvswitch-debuginfo”.

The above command automatically runs the Open vSwitch unit tests. To disable the unit tests, run:

’$ rpmbuild -bb --without check rhel/openvswitch.spec

Note: If the build fails with configure: error: source dir /lib/modules/2.6.32-279.el6.
x86_64/build doesn't exist orsimilar, then the kernel-devel package is missing or buggy.

Kernel Module

On RHEL 6, to build the Open vSwitch kernel module, copy rhel/openvswitch-kmod.files into the RPM sources
directory and run:

$ rpmbuild -bb rhel/openvswitch-kmod-rhel6.spec

You might have to specify a kernel version and/or variants, e.g.:

$ rpmbuild -bb -D “kversion 2.6.32-131.6.1.e16.x86_64" -D “kflavors default debug kdump”
rhel/openvswitch-kmod-rhel6.spec

This produces an “kmod-openvswitch” RPM for each kernel variant, in this example: “kmod-openvswitch”, “kmod-
openvswitch-debug”, and “kmod-openvswitch-kdump”.

Red Hat Network Scripts Integration

A RHEL host has default firewall rules that prevent any Open vSwitch tunnel traffic from passing through. If a user
configures Open vSwitch tunnels like Geneve, GRE, VXLAN, LISP etc., they will either have to manually add iptables
firewall rules to allow the tunnel traffic or add it through a startup script Refer to the “enable-protocol” command in
the ovs-ctl(8) manpage for more information.

In addition, simple integration with Red Hat network scripts has been implemented. Refer to README.RHEL.rst in
the source tree or /usr/share/doc/openvswitch/README.RHEL.rst in the installed openvswitch package for details.

Reporting Bugs

Report problems to bugs @openvswitch.org.

2.3.3 Upgrades
OVN Upgrades

Since OVN is a distributed system, special consideration must be given to the process used to upgrade OVN across a
deployment. This document discusses the recommended upgrade process.

48 Chapter 2. Getting Started

https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst
mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

Release Notes

You should always check the OVS and OVN release notes (NEWS file) for any release specific notes on upgrades.

ovs

OVN depends on and is included with OVS. It’s expected that OVS and OVN are upgraded together, partly for con-
venience. OVN is included in OVS releases so it’s easiest to upgrade them together. OVN may also make use of new
features of OVS only available in that release.

Upgrade ovn-controller

You should start by upgrading ovn-controller on each host it’s running on. First, you upgrade the OVS and OVN
packages. Then, restart the ovn-controller service. You can restart with ovn-ctl:

’$ sudo /usr/share/openvswitch/scripts/ovn-ctl restart_controller

or with systemd:

’$ sudo systemd restart ovn-controller

Upgrade OVN Databases and ovn-northd

The OVN databases and ovn-northd should be upgraded next. Since ovn-controller has already been upgraded, it will
be ready to operate on any new functionality specified by the database or logical flows created by ovn-northd.

Upgrading the OVN packages installs everything needed for an upgrade. The only step required after upgrading the
packages is to restart ovn-northd, which automatically restarts the databases and upgrades the database schema, as
well.

You may perform this restart using the ovn-ctl script:

’$ sudo /usr/share/openvswitch/scripts/ovn-ctl restart_northd

or if you’re using a Linux distribution with systemd:

’$ sudo systemctl restart ovn-northd

Upgrading OVN Integration

Lastly, you may also want to upgrade integration with OVN that you may be using. For example, this could be the
OpenStack Neutron driver or ovn-kubernetes.

OVN’s northbound database schema is a backwards compatible interface, so you should be able to safely complete an
OVN upgrade before upgrading any integration in use.

2.3. Installing Open vSwitch 49

Open vSwitch, Release 2.9.4

2.3.4 Others
Bash command-line completion scripts

There are two completion scripts available: ovs—-appctl-bashcomp.bash and ovs-vsctl-bashcomp.
bash.

ovs-appctl-bashcomp

ovs—-appctl-bashcomp.bash adds bash command-line completion support for ovs—appctl, ovs—-dpctl,
ovs—-ofctl and ovsdb-tool commands.

Features

* Display available completion or complete on unfinished user input (long option, subcommand, and argument).
* Subcommand hints

» Convert between keywords like bridge, port, interface, or dp and the available record in ovsdb.

Limitations

* Only supports a small set of important keywords (dp, datapath, bridge, switch, port, interface,
iface).

* Does not support parsing of nested options. For example:

’$ ovsdb-tool create [db [schema]]

* Does not support expansion on repeated argument. For example:

’ $ ovs—-dpctl show [dp...]).

e Only supports matching on long options, and only in the format —-—option [arg]. Do not use
—-—option=[arg].

ovs-vsctl-bashcomp

ovs—-vsctl-bashcomp.bash adds Bash command-line completion support for ovs—vsctl command.

Features

¢ Display available completion and complete on user input for global/local options, command, and argument.
* Query database and expand keywords like table, record, column, or key, to available completions.
* Deal with argument relations like ‘one and more’, ‘zero or one’.

¢ Complete multiple ovs—vsctl commands cascaded via ——.

50 Chapter 2. Getting Started

Open vSwitch, Release 2.9.4

Limitations

Completion of very long ovs—vsct 1l commands can take up to several seconds.

Usage

The bashcomp scripts should be placed at /et c/bash_completion.d/ to be available for all bash sessions. Run-
ning make install will place the scripts to $ (sysconfdir) /bash_completion.d/, thus, the user should
specify ——sysconfdir=/etc at configuration. If OVS is installed from packages, the scripts will automatically be
placed inside /etc/bash_completion.d/.

If you just want to run the scripts in one bash, you can remove them from /etc/bash_completion.d/ and run
the scripts via . ovs—-appctl-bashcomp.bashor. ovs-vsctl-bashcomp.bash.

Tests

Unit tests are added in tests/completion.at and integrated into autotest framework. To run the tests, just run
make check.

Open vSwitch Documentation

This document describes how to build the OVS documentation for use offline. A continuously updated, online version
can be found at docs.openvswitch.org.

Note: These instructions provide information on building the documentation locally. For information on writing
documentation, refer to Open vSwitch Documentation Style

Build Requirements

As described in the Open vSwitch Documentation Style, the Open vSwitch documentation is written in reStructured-
Text and built with Sphinx. A detailed guide on installing Sphinx in many environments is available on the Sphinx
website but, for most Linux distributions, you can install with your package manager. For example, on Debian/Ubuntu
run:

’$ sudo apt-get install python-sphinx

Similarly, on RHEL/Fedora run:

’$ sudo dnf install python-sphinx

A requirements.txt is also provided in the /Documentat ion, should you wish to install using pip:

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install -r Documentation/requirements.txt

2.3. Installing Open vSwitch 51

http://docs.openvswitch.org
http://www.sphinx-doc.org/en/master/usage/installation.html
http://www.sphinx-doc.org/en/master/usage/installation.html

Open vSwitch, Release 2.9.4

Configuring

It’s unlikely that you’ll need to customize any aspect of the configuration. However, the Documentation/conf.
py is the go-to place for all configuration. This file is well documented and further information is available on the
Sphinx website.

Building

Once Sphinx installed, the documentation can be built using the provided Makefile targets:

$ make docs-check

Important: The docs-check target will fail if there are any syntax errors. However, it won’t catch more succint
issues such as style or grammar issues. As a result, you should always inspect changes visually to ensure the result is
as intended.

Once built, documentation is available in the /Documentation/_build folder. Open the root index.html to
browse the documentation.

52 Chapter 2. Getting Started

http://www.sphinx-doc.org/en/master/config.html

CHAPTER 3

Tutorials

Getting started with Open vSwitch (OVS) and Open Virtual Network (OVN) for Open vSwitch.

3.1 OVS Faucet Tutorial

This tutorial demonstrates how Open vSwitch works with a general-purpose OpenFlow controller, using the Faucet
controller as a simple way to get started. It was tested with the “master” branch of Open vSwitch and version 1.6.15
of Faucet. It does not use advanced or recently added features in OVS or Faucet, so other versions of both pieces of
software are likely to work equally well.

The goal of the tutorial is to demonstrate Open vSwitch and Faucet in an end-to-end way, that is, to show how it works
from the Faucet controller configuration at the top, through the OpenFlow flow table, to the datapath processing. Along
the way, in addition to helping to understand the architecture at each level, we discuss performance and troubleshooting
issues. We hope that this demonstration makes it easier for users and potential users to understand how Open vSwitch
works and how to debug and troubleshoot it.

We provide enough details in the tutorial that you should be able to fully follow along by following the instructions.

3.1.1 Setting Up OVS

This section explains how to set up Open vSwitch for the purpose of using it with Faucet for the tutorial.

You might already have Open vSwitch installed on one or more computers or VMs, perhaps set up to control a set
of VMs or a physical network. This is admirable, but we will be using Open vSwitch in a different way to set up a
simulation environment called the OVS “sandbox”. The sandbox does not use virtual machines or containers, which
makes it more limited, but on the other hand it is (in this writer’s opinion) easier to set up.

There are two ways to start a sandbox: one that uses the Open vSwitch that is already installed on a system, and
another that uses a copy of Open vSwitch that has been built but not yet installed. The latter is more often used and
thus better tested, but both should work. The instructions below explain both approaches:

1. Get a copy of the Open vSwitch source repository using Git, then cd into the new directory:

53

Open vSwitch, Release 2.9.4

$ git clone https://github.com/openvswitch/ovs.git
$ cd ovs

The default checkout is the master branch. You can check out a tag (such as v2.8.0) or a branch (such as
origin/branch-2.8), if you prefer.

2. If you do not already have an installed copy of Open vSwitch on your system, or if you do not want to use it for
the sandbox (the sandbox will not disturb the functionality of any existing switches), then proceed to step 3. If
you do have an installed copy and you want to use it for the sandbox, try to start the sandbox by running:

$ tutorial/ovs-sandbox

If it is successful, you will find yourself in a subshell environment, which is the sandbox (you can exit with
exit or Control+D). If so, you're finished and do not need to complete the rest of the steps. If it fails, you can
proceed to step 3 to build Open vSwitch anyway.

3. Before you build, you might want to check that your system meets the build requirements. Read Open vSwitch
on Linux, FreeBSD and NetBSD to find out. For this tutorial, there is no need to compile the Linux kernel
module, or to use any of the optional libraries such as OpenSSL, DPDK, or libcap-ng.

4. Configure and build Open vSwitch:

$./boot.sh
$./configure
$ make -3j4

5. Try out the sandbox by running:

S make sandbox

You can exit the sandbox with exit or Control+D.

3.1.2 Setting up Faucet

This section explains how to get a copy of Faucet and set it up appropriately for the tutorial. There are many other
ways to install Faucet, but this simple approach worked well for me. It has the advantage that it does not require
modifying any system-level files or directories on your machine. It does, on the other hand, require Docker, so make
sure you have it installed and working.

It will be a little easier to go through the rest of the tutorial if you run these instructions in a separate terminal from the
one that you’re using for Open vSwitch, because it’s often necessary to switch between one and the other.

1. Get a copy of the Faucet source repository using Git, then cd into the new directory:

$ git clone https://github.com/faucetsdn/faucet.git
$ cd faucet

At this point I checked out the latest tag:

$ latest_tag=$(git describe --tags $(git rev-list --tags --max-count=1))
$ git checkout $latest_tag

2. Build a docker container image:

$ docker build -t faucet/faucet

This will take a few minutes.

54 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

3. Create an installation directory under the faucet directory for the docker image to use:

$ mkdir inst

The Faucet configuration will go in inst/faucet.yaml and its main log will appear in inst/faucet.
log. (The official Faucet installation instructions call to put these in /etc/ryu/faucet and /var/log/
ryu/faucet, respectively, but we avoid modifying these system directories.)

4. Create a container and start Faucet:

$ docker run -d —--name faucet —--restart=always -v $(pwd)/inst/:/etc/faucet/ -v
—$(pwd) /inst/:/var/log/faucet/ —-p 6653:6653 —p 9302:9302 faucet/faucet

5. Look in inst/faucet. log to verify that Faucet started. It will probably start with an exception and trace-
back because we have not yet created inst/faucet.yaml.

6. Later on, to make a new or updated Faucet configuration take effect quickly, you can run:

’$ docker exec faucet pkill -HUP -f faucet.faucet

Another way is to stop and start the Faucet container:

’$ docker restart faucet

You can also stop and delete the container; after this, to start it again, you need to rerun the docker run
command:

$ docker stop faucet
$ docker rm faucet

3.1.3 Overview
Now that Open vSwitch and Faucet are ready, here’s an overview of what we’re going to do for the remainder of the
tutorial:

1. Switching: Set up an L2 network with Faucet.

2. Routing: Route between multiple L3 networks with Faucet.

3. ACLs: Add and modify access control rules.

At each step, we will take a look at how the features in question work from Faucet at the top to the data plane layer at
the bottom. From the highest to lowest level, these layers and the software components that connect them are:

Faucet. As the top level in the system, this is the authoritative source of the network configuration.

Faucet connects to a variety of monitoring and performance tools, but we won’t use them in this tutorial. Our
main insights into the system will be through faucet .yaml for configuration and faucet . 1log to observe
state, such as MAC learning and ARP resolution, and to tell when we’ve screwed up configuration syntax or
semantics.

The OpenFlow subsystem in Open vSwitch. OpenFlow is the protocol, standardized by the Open Networking
Foundation, that controllers like Faucet use to control how Open vSwitch and other switches treat packets in the
network.

We will use ovs—-ofctl, a utility that comes with Open vSwitch, to observe and occasionally modify
Open vSwitch’s OpenFlow behavior. We will also use ovs—appctl, a utility for communicating with
ovs—-vswitchd and other Open vSwitch daemons, to ask “what-if?” type questions.

3.1. OVS Faucet Tutorial 55

Open vSwitch, Release 2.9.4

In addition, the OVS sandbox by default raises the Open vSwitch logging level for OpenFlow high enough that
we can learn a great deal about OpenFlow behavior simply by reading its log file.

Open vSwitch datapath. This is essentially a cache designed to accelerate packet processing. Open vSwitch includes
a few different datapaths, such as one based on the Linux kernel and a userspace-only datapath (sometimes called
the “DPDK” datapath). The OVS sandbox uses the latter, but the principles behind it apply equally well to other
datapaths.

At each step, we discuss how the design of each layer influences performance. We demonstrate how Open vSwitch
features can be used to debug, troubleshoot, and understand the system as a whole.

3.1.4 Switching

Layer-2 (L2) switching is the basis of modern networking. It’s also very simple and a good place to start, so let’s
set up a switch with some VLANSs in Faucet and see how it works at each layer. Begin by putting the following into
inst/faucet.yaml:

dps:
switch-1:
dp_id: 0x1
timeout: 3600
arp_neighbor_timeout: 3600
interfaces:
1:
native_vlan: 100
2
native_vlan: 100
3:
native_vlan: 100
4:
native_vlan: 200
5:
native_vlan: 200
vlans:
100:
200:

This configuration file defines a single switch (“datapath” or “dp”) named switch-1. The switch has five ports,
numbered 1 through 5. Ports 1, 2, and 3 are in VLAN 100, and ports 4 and 5 are in VLAN 2. Faucet can identify the
switch from its datapath ID, which is defined to be Ox1.

Note: This also sets high MAC learning and ARP timeouts. The defaults are 5 minutes and about 8 minutes, which
are fine in production but sometimes too fast for manual experimentation. (Don’t use a timeout bigger than about
65000 seconds because it will crash Faucet.)

Now restart Faucet so that the configuration takes effect, e.g.:

’$ docker restart faucet

Assuming that the configuration update is successful, you should now see a new line at the end of inst/faucet.
log:

’Jan 06 15:14:35 faucet INFO Add new datapath DPID 1 (0x1)

Faucet is now waiting for a switch with datapath ID Ox1 to connect to it over OpenFlow, so our next step is to create
a switch with OVS and make it connect to Faucet. To do that, switch to the terminal where you checked out OVS and

56 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

start a sandbox with make sandbox or tutorial/ovs-sandbox (as explained earlier under Serting Up OVYS).
You should see something like this toward the end of the output:

You are running in a dummy Open vSwitch environment. You can use
ovs-vsctl, ovs-ofctl, ovs—-appctl, and other tools to work with the
dummy switch.

Log files, pidfiles, and the configuration database are in the
"sandbox" subdirectory.

Exit the shell to kill the running daemons.
blp@sigabrt:~/nicira/ovs/tutorial (0)$

Inside the sandbox, create a switch (“bridge”) named br0, set its datapath ID to Ox1, add simulated ports to it named
pl through p5, and tell it to connect to the Faucet controller. To make it easier to understand, we request for port
p1l to be assigned OpenFlow port 1, p2 port 2, and so on. As a final touch, configure the controller to be “out-of-
band” (this is mainly to avoid some annoying messages in the ovs—vswitchd logs; for more information, run man
ovs—-vswitchd.conf.db and search for connection_mode):

$ ovs-vsctl add-br br0 \
-— set bridge br0 other-config:datapath-id=0000000000000001 \

-— add-port br0 pl -- set interface pl ofport_request=1 \
—-— add-port br0 p2 -- set interface p2 ofport_request=2 \
-— add-port br0 p3 -- set interface p3 ofport_request=3 \
-— add-port br0 p4 -- set interface pd4 ofport_request=4 \
—— add-port br0 p5 -- set interface p5 ofport_request=5 \

-— set-controller br0 tcp:127.0.0.1:6653 \
—-— set controller br0 connection-mode=out-of-band

Note: You don’t have to run all of these as a single ovs—vsctl invocation. It is a little more efficient, though, and
since it updates the OVS configuration in a single database transaction it means that, for example, there is never a time
when the controller is set but it has not yet been configured as out-of-band.

Now, if you look at inst/faucet . log again, you should see that Faucet recognized and configured the new switch
and its ports:

Jan 06 15:17:10 faucet INFO DPID 1 (0x1l) connected

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0xl) Cold start configuring DP

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0x1l) Configuring VLAN 100 vid:100,
—ports:Port 1,Port 2,Port 3

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0xl) Configuring VLAN 200 vid:200_
—ports:Port 4,Port 5

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0xl) Port 1 up, configuring

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0xl) Port 2 up, configuring

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0xl) Port 3 up, configuring

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0xl) Port 4 up, configuring

Jan 06 15:17:10 faucet.valve INFO DPID 1 (0xl) Port 5 up, configuring

Over on the Open vSwitch side, you can see a lot of related activity if you take a look in sandbox/ovs-vswitchd.
log. For example, here is the basic OpenFlow session setup and Faucet’s probe of the switch’s ports and capabilities:

rconn|INFO|brO0<->tcp:127.0.0.1:6653: connecting...
vconn|DBG|tcp:127.0.0.1:6653: sent (Success): OFPT_HELLO (OFl1.4) (xid=0x1):
version bitmap: 0x01, 0x02, 0x03, 0x04, 0x05

(continues on next page)

3.1. OVS Faucet Tutorial 57

Open vSwitch, Release 2.9.4

(continued from previous page)

veconn |DBG|tcp:127.0.0.1:6653:
version bitmap: 0x01, 0x02,
veconn|DBG|tcp:127.0.0.1:6653:
—0x05 and earlier, peer suppo
rconn | INFO|brO<->tcp:127.0.0.1
vconn |DBG|tcp:127.0.0.1:6653:

—bytes of payload
vconn|DBG|tcp:127.0.
— (xid=0x2f24810Db) :
vconn|DBG|tcp:127.0.
— (x1d=0x2£24810c) :
vconn|DBG|tcp:127.0.
— (xid=0x2£f24810c) :

n_tables:254,
capabilities:
vconn |DBG|tcp:127.0.0.1:6653:
— (x1d=0x2£f24810d) : port=ANY
vconn |DBG|tcp:127.0.0.1:6653:
— (xid=0x2£24810d) :

0

0
0
0

.1:6653:
bytes of
.1:6653:

0.1:6653:
dpid:00000
n_buffers:0

1(pl): addr:aa:55:aa:55:00:14
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps
2(p2): addr:aa:55:aa:55:00:15
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps
3(p3): addr:aa:55:aa:55:00:16
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps
4(p4): addr:aa:55:aa:55:00:17
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps
5(p5): addr:aa:55:aa:55:00:18
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps
LOCAL (br0) : addr:c6:64:£f£f:59:
config: PORT_DOWN
state: LINK_DOWN
speed: 0 Mbps now, 0 Mbps

received: OFPT_HELLO
x03, 0x04

negotiated OpenFlow version 0x04
rts version 0x04 and earlier)
:6653: connected

(OF1.3) (xid=0x2f24810a):

(we support version,

received: OFPT_ECHO_REQUEST (OF1.3) (xid=0x2f24810b):
sent (Success): OFPT_ECHO_REPLY (OF1.3)_,

payload

received: OFPT_FEATURES_REQUEST (OF1.3)

sent (Success): OFPT_FEATURES_REPLY (OF1l.3),
00000000001

FLOW_STATS TABLE_STATS PORT_STATS GROUP_STATS QUEUE_STATS

received: OFPST_PORT_DESC request (OF1l.3),

sent (Success): OFPST_PORT_DESC reply (OF1l.3)

max

max

max

max

max

48:41

max

0

[

After that, you can see Faucet delete all existing flows and then start adding new ones:

vconn |DBG|tcp:127.0.0.1:6653:
—table:255 priority=0 actions
veconn |DBG|tcp:127.0.0.1:6653:
vconn |DBG|tcp:127.0.0.1:6653:
— (x1d=0x2£24810f) :

vconn |DBG|tcp:127.0.0.1:6653:
—priority=0 cookie:0xbadcl5c0
vconn|DBG|tcp:127.0.0.1:6653:

received: OFPT_FLOW_MOD
=drop

received: OFPT_BARRIER_REQUEST
sent (Success): OFPT_BARRIER_REPLY

(OF1.3) (xid=0x2f24810e) :
(OF1.3)
(OF1.3)

received: OFPT_FLOW_MOD
out_port:0 actions=drop
received: OFPT_FLOW_MOD

(OF1.3) (xid=0x2£248110):

(OF1.3) (xid=0x2£248111):

—~table:l priority=0 cookie:0x5adcl5c0 out_port:0 actions=drop

DEL

ADD,

ADD

[

(x1d=0x2£24810f) :

58

Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

OpenFlow Layer

Let’s take a look at the OpenFlow tables that Faucet set up. Before we do that, it’s helpful to take a look at docs/
architecture.rst in the Faucet documentation to learn how Faucet structures its flow tables. In summary, this
document says:

Table 0 Port-based ACLs

Table 1 Ingress VLAN processing

Table 2 VLAN-based ACLs

Table 3 Ingress L2 processing, MAC learning

Table 4 L3 forwarding for IPv4

Table 5 L3 forwarding for IPv6

Table 6 Virtual IP processing, e.g. for router IP addresses implemented by Faucet
Table 7 Egress L2 processing

Table 8 Flooding

With that in mind, let’s dump the flow tables. The simplest way is to just run plain ovs-ofctl dump-flows:

$ ovs—-ofctl dump-flows br0

If you run that bare command, it produces a lot of extra junk that makes the output harder to read, like statistics
and “cookie” values that are all the same. In addition, for historical reasons ovs-ofctl always defaults to using
OpenFlow 1.0 even though Faucet and most modern controllers use OpenFlow 1.3, so it’s best to force it to use
OpenFlow 1.3. We could throw in a lot of options to fix these, but we’ll want to do this more than once, so let’s start
by defining a shell function for ourselves:

$ dump-flows () {
ovs—ofctl -OOpenFlowl3 —--names —--no-stat dump-flows "$@" \
| sed 's/cookie=0x5adcl5c0, //'

Let’s also define save—flows and diff-flows functions for later use:

$ save-flows () {
ovs-ofctl -OOpenFlowl3 —--no-names --sort dump-flows "$@"
}
$ diff-flows () {
ovs—ofctl —-OOpenFlowl3 diff-flows "$Q@" | sed 's/cookie=0x5adcl5c0 //'

Now let’s take a look at the flows we’ve got and what they mean, like this:

$ dump-flows br0

First, table O has a flow that just jumps to table 1 for each configured port, and drops other unrecognized packets.
Presumably it will do more if we configured port-based ACLs:

priority=9099,in_port=pl actions=goto_table:
priority=9099, in_port=p2 actions=goto_table:
priority=9099,in_port=p3 actions=goto_table:
priority=9099,in_port=p4 actions=goto_table:
priority=9099, in_port=p5 actions=goto_table:
priority=0 actions=drop

[N S

3.1. OVS Faucet Tutorial 59

Open vSwitch, Release 2.9.4

Table 1, for ingress VLAN processing, has a bunch of flows that drop inappropriate packets, such as LLDP and STP:

table=1, priority=9099,dl_dst=01:80:c2:00:00:00 actions=drop
table=1, priority=9099,dl_dst=01:00:0c:cc:cc:cd actions=drop
table=1, priority=9099,dl_type=0x88cc actions=drop

Table 1 also has some more interesting flows that recognize packets without a VLAN header on each of our ports
(vlan_tci=0x0000/0x1£f£ff), push on the VLAN configured for the port, and proceed to table 3. Presumably
these skip table 2 because we did not configure any VLAN-based ACLs. There is also a fallback flow to drop other
packets, which in practice means that if any received packet already has a VLAN header then it will be dropped:

table=1, priority=9000,in_port=pl,vlian_tci=0x0000/0x1fff actions=push_vlan:0x8100,set_
—~field:4196->vlan_vid, goto_table:3

table=1, priority=9000,in_port=p2,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100, set_
—field:4196->vlan_vid, goto_table:3

table=1, priority=9000,in_port=p3,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100, set_
—field:4196->vlan_vid,goto_table:3

table=1, priority=9000,in_port=p4,vlian_tci=0x0000/0x1fff actions=push_vlan:0x8100, set_
—~field:4296->vlan_vid, goto_table:3

table=1, priority=9000,in_port=p5,vlan_tci=0x0000/0x1fff actions=push_vlan:0x8100, set_
—field:4296->vlan_vid, goto_table:3

table=1, priority=0 actions=drop

Note: The syntax set_field:4196->vlan_vid is curious and somewhat misleading. OpenFlow 1.3 defines
the vian_vid field as a 13-bit field where bit 12 is set to 1 if the VLAN header is present. Thus, since 4196 is
0x1064, this action sets VLAN value 0x64, which in decimal is 100.

Table 2 isn’t used because there are no VLAN-based ACLs. It just has a drop flow:

table=2, priority=0 actions=drop

Table 3 is used for MAC learning but the controller hasn’t learned any MAC yet. It also drops some inappropriate
packets such as those that claim to be from a broadcast source address (why not from all multicast source addresses,
though?). We’ll come back here later:

table=3, priority=9099,dl_src=ff:ff:ff:ff:ff:ff actions=drop
table=3, priority=9001,dl_src=0e:00:00:00:00:01 actions=drop
table=3, priority=0 actions=drop

table=3, priority=9000 actions=CONTROLLER:96,goto_table:7

Tables 4, 5, and 6 aren’t used because we haven’t configured any routing:

table=4, priority=0 actions=drop
table=5, priority=0 actions=drop
table=6, priority=0 actions=drop

Table 7 is used to direct packets to learned MACs but Faucet hasn’t learned any MACs yet, so it just sends all the
packets along to table 8:

table=7, priority=0 actions=drop
table=7, priority=9000 actions=goto_table:8

Table 8 implements flooding, broadcast, and multicast. The flows for broadcast and flood are easy to understand: if
the packet came in on a given port and needs to be flooded or broadcast, output it to all the other ports in the same
VLAN:

60 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

table=8, priority=9008,in_port=pl,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
—vlan, output:p2, output:p3

table=8, priority=9008,in_port=p2,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
—vlan,output:pl, output:p3

table=8, priority=9008,in_port=p3,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
—vlan,output:pl, output:p2

table=8, priority=9008,in_port=p4,dl_vlan=200,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
—vlan, output:p5

table=8, priority=9008,in_port=p5,dl_vlan=200,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_
—vlan, output:p4

table=8, priority=9000,in_port=pl,dl_vlan=100 actions=pop_vlan,output:p2,output:p3
table=8, priority=9000,in_port=p2,dl_vlan=100 actions=pop_vlan,output:pl,output:p3
table=8, priority=9000,in_port=p3,dl_vlan=100 actions=pop_vlan,output:pl,output:p2
table=8, priority=9000,in_port=p4,dl_vlan=200 actions=pop_vlan,output:pb

table=8, priority=9000,in_port=p5,dl_vlan=200 actions=pop_vlan,output:p4

Note: These flows could apparently be simpler because OpenFlow says that out put : <port> isignored if <port>
is the input port. That means that the first three flows above could apparently be collapsed into just:

table=8, priority=9008,dl_vlan=100,dl_dst=ff:ff:ff:ff:ff:ff actions=pop_vlan,
—output:pl,output:p2, output:p3

There might be some reason why this won’t work or isn’t practical, but that isn’t obvious from looking at the flow
table.

There are also some flows for handling some standard forms of multicast, and a fallback drop flow:

table=8, priority=9006,in_port=pl,dl_vlan=100,dl_dst=33:33:00:00:00:00/
—ff:££:00:00:00:00 actions=pop_vlan,output:p2,output:p3

table=8, priority=9006,in_port=p2,dl_vlan=100,dl_dst=33:33:00:00:00:00/
—ff:££:00:00:00:00 actions=pop_vlan,output:pl,output:p3

table=8, priority=9006,in_port=p3,dl_vlan=100,dl_dst=33:33:00:00:00:00/
—ff:££:00:00:00:00 actions=pop_vlan,output:pl,output:p2

table=8, priority=9006,in_port=p4,dl_vlan=200,dl_dst=33:33:00:00:00:00/
—ff:££:00:00:00:00 actions=pop_vlan,output:p5

table=8, priority=9006,in_port=p5,dl_vlan=200,dl_dst=33:33:00:00:00:00/
—ff:££:00:00:00:00 actions=pop_vlan,output:p4

table=8, priority=9002,in_port=pl,dl_vlan=100,dl_dst=01:80:c2:00:00:00/
—ff:f£f:££:00:00:00 actions=pop_vlan,output:p2,output:p3

table=8, priority=9002,in_port=p2,dl_vlan=100,dl_dst=01:80:¢c2:00:00:00/
—ff:f£f:££:00:00:00 actions=pop_vlan,output:pl,output:p3

table=8, priority=9002,in_port=p3,dl_vlan=100,dl_dst=01:80:c2:00:00:00/
—ff:f£:££:00:00:00 actions=pop_vlan,output:pl,output:p2

table=8, priority=9004,in_port=pl,dl_vlan=100,dl_dst=01:00:5e:00:00:00/
—ff:ff:££:00:00:00 actions=pop_vlan,output:p2,output:p3

table=8, priority=9004,in_port=p2,dl_vlan=100,dl_dst=01:00:5e:00:00:00/
—ff:ff:££:00:00:00 actions=pop_vlan,output:pl,output:p3

table=8, priority=9004,in_port=p3,dl_vlan=100,dl_dst=01:00:5e:00:00:00/
—ff:ff:££:00:00:00 actions=pop_vlan,output:pl,output:p2

table=8, priority=9002,in_port=p4,dl_vlan=200,dl_dst=01:80:c2:00:00:00/
—ff:f£f:££:00:00:00 actions=pop_vlan,output:p5

table=8, priority=9002,in_port=p5,dl_vlan=200,dl_dst=01:80:¢c2:00:00:00/
—ff:f£:££:00:00:00 actions=pop_vlan,output:p4

table=8, priority=9004,in_port=p4,dl_vlan=200,dl_dst=01:00:5e:00:00:00/
—ff:ff:££:00:00:00 actions=pop_vlan,output:p5

(continues on next page)

3.1. OVS Faucet Tutorial 61

Open vSwitch, Release 2.9.4

(continued from previous page)

table=8, priority=9004,in_port=p5,dl_vlan=200,dl_dst=01:00:5e:00:00:00/
—ff:f£f:££:00:00:00 actions=pop_vlan,output:p4
table=8, priority=0 actions=drop

Tracing

Let’s go a level deeper. So far, everything we’ve done has been fairly general. We can also look at something more
specific: the path that a particular packet would take through Open vSwitch. We can use OVN ofproto/trace
command to play “what-if?” games. This command is one that we send directly to ovs—-vswitchd, using the
ovs—appctl utility.

Note: ovs-appctl is actually a very simple-minded JSON-RPC client, so you could also use some other utility
that speaks JSON-RPC, or access it from a program as an API.

The ovs—-vswitchd(8) manpage has a lot of detail on how to use ofproto/trace, but let’s just start by building
up from a simple example. You can start with a command that just specifies the datapath (e.g. br0), an input port,
and nothing else; unspecified fields default to all-zeros. Let’s look at the full output for this trivial example:

$ ovs—appctl ofproto/trace br0 in_port=pl
Flow: in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:00:00,d1_
—type=0x0000

bridge ("br0O")

0. in_port=1, priority 9099, cookie 0Ox5adcl5cO
goto_table:1l

1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5cO
push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. priority 9000, cookie 0x5adcl5cO
CONTROLLER: 96
goto_table:7

7. priority 9000, cookie 0x5adcl5cO
goto_table:8

8. in_port=1,dl_vlan=100, priority 9000, cookie 0x5adcl5cO
pop_vlan
output:2
output:3

Final flow: unchanged

Megaflow: recirc_id=0,eth,in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1_
—dst=00:00:00:00:00:00,d1_type=0x0000

Datapath actions: push_vlan(vid=100,pcp=0),userspace (pid=0,controller (reason=1,
—~flags=1l,recirc_id=1,rule_cookie=0x5adcl5c0, controller_id=0,max_len=96)),pop_vlan,2,3

The first line of output, beginning with F1ow :, just repeats our request in a more verbose form, including the L2 fields
that were zeroed.

Each of the numbered items under bridge ("br0") shows what would happen to our hypothetical packet in the
table with the given number. For example, we see in table 1 that the packet matches a flow that push on a VLAN
header, set the VLAN ID to 100, and goes on to further processing in table 3. In table 3, the packet gets sent to the
controller to allow MAC learning to take place, and then table 8 floods the packet to the other ports in the same VLAN.

62 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

Summary information follows the numbered tables. The packet hasn’t been changed (overall, even though a VLAN
was pushed and then popped back off) since ingress, hence Final flow: unchanged. We’ll look at the
Megaflow information later. The Datapath actions summarize what would actually happen to such a packet.

Triggering MAC Learning

We just saw how a packet gets sent to the controller to trigger MAC learning. Let’s actually send the packet and see
what happens. But before we do that, let’s save a copy of the current flow tables for later comparison:

$ save-flows br0 > flowsl

Now use ofproto/trace, as before, with a few new twists: we specify the source and destination Ethernet ad-
dresses and append the —~generate option so that side effects like sending a packet to the controller actually happen:

$ ovs—appctl ofproto/trace br0 in_port=pl,dl_src=00:11:11:00:00:00,d1_
—dst=00:22:22:00:00:00 —-generate

The output is almost identical to that before, so it is not repeated here. But, take a look at inst/faucet . log now.
It should now include a line at the end that says that it learned about our MAC 00:11:11:00:00:00, like this:

Jan 06 15:56:02 faucet.valve INFO DPID 1 (0xl) L2 learned 00:11:11:00:00:00 (L2
—type 0x0000, L3 src None) on Port 1 on VLAN 100 (1 hosts total

Now compare the flow tables that we saved to the current ones:

diff-flows flowsl br0

The result should look like this, showing new flows for the learned MACs:

+table=3 priority=9098, in_port=1,dl_vlan=100,dl_src=00:11:11:00:00:00 hard_
—timeout=3601 actions=goto_table:7

+table=7 priority=9099,dl_vlan=100,dl_dst=00:11:11:00:00:00 idle_timeout=3601_
—actions=pop_vlan,output:1l

To demonstrate the usefulness of the learned MAC, try tracing (with side effects) a packet arriving on p2 (or p3) and
destined to the address learned on p1, like this:

$ ovs—appctl ofproto/trace br0 in_port=p2,dl_src=00:22:22:00:00:00,d1_
—dst=00:11:11:00:00:00 —generate

The first time you run this command, you will notice that it sends the packet to the controller, to learn p2’s
00:22:22:00:00:00 source address:

bridge ("br0™")

0. in_port=2, priority 9099, cookie Ox5adcl5cO
goto_table:1l

1. in_port=2,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5c0
push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. priority 9000, cookie 0Ox5adcl5c0
CONTROLLER: 96
goto_table: 7

7. dl_vlan=100,dl_dst=00:11:11:00:00:00, priority 9099, cookie 0Ox5adcl5cO
pop_vlan
output:1

3.1. OVS Faucet Tutorial 63

Open vSwitch, Release 2.9.4

If you check inst/faucet.log, you can see that p2’s MAC has been learned too:

Jan 06 15:58:09 faucet.valve INFO DPID 1 (0x1l) L2 learned 00:22:22:00:00:00 (L2,
—type 0x0000, L3 src None) on Port 2 on VLAN 100 (2 hosts total)

Similarly for diff-flows:

$ diff-flows flowsl bro0

+table=3 priority=9098, in_port=1,dl_vlan=100,dl_src=00:11:11:00:00:00 hard_
—timeout=3601 actions=goto_table:7

+table=3 priority=9098,in_port=2,dl_vlan=100,dl_src=00:22:22:00:00:00 hard_
—timeout=3604 actions=goto_table:7

+table=7 priority=9099,dl_vlan=100,dl_dst=00:11:11:00:00:00 idle_timeout=3601_
—actions=pop_vlan,output:1l

+table=7 priority=9099,dl_vlan=100,dl_dst=00:22:22:00:00:00 idle_timeout=3604_
—actions=pop_vlan,output:2

Then, if you re-run either of the ofproto/trace commands (with or without —generate), you can see that the
packets go back and forth without any further MAC learning, e.g.:

$ ovs—appctl ofproto/trace br0 in_port=p2,dl_src=00:22:22:00:00:00,d1_
—dst=00:11:11:00:00:00 —generate

Flow: in_port=2,vlan_tci=0x0000,dl_src=00:22:22:00:00:00,d1_dst=00:11:11:00:00:00,d1_
—type=0x0000

bridge ("br0O")

0. in_port=2, priority 9099, cookie 0Ox5adcl5cO
goto_table:1l

1. in_port=2,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5cO
push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. in_port=2,dl_vlan=100,dl_src=00:22:22:00:00:00, priority 9098, cookie 0x5adcl5c0O
goto_table:7

7. dl_vlan=100,dl_dst=00:11:11:00:00:00, priority 9099, cookie 0x5adcl5cO
pop_vlan
output:1

Final flow: unchanged

Megaflow: recirc_id=0,eth, in_port=2,vlan_tci=0x0000/0x1fff,dl_src=00:22:22:00:00:00,
—dl_dst=00:11:11:00:00:00,d1l_type=0x0000

Datapath actions: 1

Performance

Open vSwitch has a concept of a “fast path” and a “slow path”; ideally all packets stay in the fast path. This distinction
between slow path and fast path is the key to making sure that Open vSwitch performs as fast as possible.

Some factors can force a flow or a packet to take the slow path. As one example, all CFM, BFD, LACP, STP, and
LLDP processing takes place in the slow path, in the cases where Open vSwitch processes these protocols itself instead
of delegating to controller-written flows. As a second example, any flow that modifies ARP fields is processed in the
slow path. These are corner cases that are unlikely to cause performance problems in practice because these protocols
send packets at a relatively slow rate, and users and controller authors do not normally need to be concerned about
them.

64 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

To understand what cases users and controller authors should consider, we need to talk about how Open vSwitch opti-
mizes for performance. The Open vSwitch code is divided into two major components which, as already mentioned,
are called the “slow path” and “fast path” (aka “datapath”). The slow path is embedded in the ovs—vswitchd
userspace program. It is the part of the Open vSwitch packet processing logic that understands OpenFlow. Its job is to
take a packet and run it through the OpenFlow tables to determine what should happen to it. It outputs a list of actions
in a form similar to OpenFlow actions but simpler, called “ODP actions” or “datapath actions”. It then passes the ODP
actions to the datapath, which applies them to the packet.

Note: Open vSwitch contains a single slow path and multiple fast paths. The difference between using Open vSwitch
with the Linux kernel versus with DPDK is the datapath.

If every packet passed through the slow path and the fast path in this way, performance would be terrible. The key to
getting high performance from this architecture is caching. Open vSwitch includes a multi-level cache. It works like
this:

1. A packet initially arrives at the datapath. Some datapaths (such as DPDK and the in-tree version of the OVS
kernel module) have a first-level cache called the “microflow cache”. The microflow cache is the key to perfor-
mance for relatively long-lived, high packet rate flows. If the datapath has a microflow cache, then it consults it
and, if there is a cache hit, the datapath executes the associated actions. Otherwise, it proceeds to step 2.

2. The datapath consults its second-level cache, called the “megaflow cache”. The megaflow cache is the key to
performance for shorter or low packet rate flows. If there is a megaflow cache hit, the datapath executes the
associated actions. Otherwise, it proceeds to step 3.

3. The datapath passes the packet to the slow path, which runs it through the OpenFlow table to yield ODP actions,
a process that is often called “flow translation”. It then passes the packet back to the datapath to execute
the actions and to, if possible, install a megaflow cache entry so that subsequent similar packets can be handled
directly by the fast path. (We already described above most of the cases where a cache entry cannot be installed.)

The megaflow cache is the key cache to consider for performance tuning. Open vSwitch provides tools for under-
standing and optimizing its behavior. The ofproto/trace command that we have already been using is the most
common tool for this use. Let’s take another look at the most recent ofproto/trace output:

$ ovs—appctl ofproto/trace br0 in_port=p2,dl_src=00:22:22:00:00:00,d1_
—dst=00:11:11:00:00:00 —-generate

Flow: in_port=2,vlan_tci=0x0000,dl_src=00:22:22:00:00:00,d1_dst=00:11:11:00:00:00,d1_
—type=0x0000

bridge ("br0O")

0. in_port=2, priority 9099, cookie 0Ox5adcl5cO
goto_table:1l

1. in_port=2,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5c0
push_vlan:0x8100
set_field:4196—>vlan_vid
goto_table:3

3. in_port=2,dl_vlan=100,dl_src=00:22:22:00:00:00, priority 9098, cookie 0x5adcl5cO
goto_table:7

7. dl_vlan=100,dl_dst=00:11:11:00:00:00, priority 9099, cookie 0x5adcl5cO
pop_vlan
output:1

Final flow: unchanged

Megaflow: recirc_id=0,eth,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=00:22:22:00:00:00,
—dl_dst=00:11:11:00:00:00,d1_type=0x0000

Datapath actions: 1

3.1. OVS Faucet Tutorial 65

Open vSwitch, Release 2.9.4

This time, it’s the last line that we’re interested in. This line shows the entry that Open vSwitch would insert into the
megaflow cache given the particular packet with the current flow tables. The megaflow entry includes:

* recirc_id. This is an implementation detail that users don’t normally need to understand.

e eth. This just indicates that the cache entry matches only Ethernet packets; Open vSwitch also supports other
types of packets, such as IP packets not encapsulated in Ethernet.

» All of the fields matched by any of the flows that the packet visited:
in_port Intables 0, 1, and 3.

vlan_tci Intables 1, 3, and 7 (vlan_tci includes the VLAN ID and PCP fields and*‘dl_vlan‘‘ is just the
VLAN ID).

dl_src Intable 3
dl_dst Intable 7.

¢ All of the fields matched by flows that had to be ruled out to ensure that the ones that actually matched were the
highest priority matching rules.

The last one is important. Notice how the megaflow matches on d1_type=0x0000, even though none of the tables
matched on d1_type (the Ethernet type). One reason is because of this flow in OpenFlow table 1 (which shows up
in dump-flows output):

table=1, priority=9099,dl_type=0x88cc actions=drop

This flow has higher priority than the flow in table 1 that actually matched. This means that, to put it in the megaflow
cache, ovs—-vswitchd has to add a match on d1_type to ensure that the cache entry doesn’t match LLDP packets
(with Ethertype 0x88cc).

Note: In fact, in some cases ovs—vswitchd matches on fields that aren’t strictly required according to this de-
scription. d1_type is actually one of those, so deleting the LLDP flow probably would not have any effect on the
megaflow. But the principle here is sound.

So why does any of this matter? It’s because, the more specific a megaflow is, that is, the more fields or bits within
fields that a megaflow matches, the less valuable it is from a caching viewpoint. A very specific megaflow might match
on L2 and L3 addresses and L4 port numbers. When that happens, only packets in one (half-)connection match the
megaflow. If that connection has only a few packets, as many connections do, then the high cost of the slow path
translation is amortized over only a few packets, so the average cost of forwarding those packets is high. On the other
hand, if a megaflow only matches a relatively small number of L2 and L3 packets, then the cache entry can potentially
be used by many individual connections, and the average cost is low.

For more information on how Open vSwitch constructs megaflows, including about ways that it can make megaflow
entries less specific than one would infer from the discussion here, please refer to the 2015 NSDI paper, “The Design
and Implementation of Open vSwitch”, which focuses on this algorithm.

3.1.5 Routing
We’ve looked at how Faucet implements switching in OpenFlow, and how Open vSwitch implements OpenFlow
through its datapath architecture. Now let’s start over, adding L3 routing into the picture.

It’s remarkably easy to enable routing. We just change our vlans section in inst/faucet.yaml to specify a
router IP address for each VLAN and define a router between them. The dps section is unchanged:

66 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

dps:
switch-1:
dp_id: 0x1
timeout: 3600
arp_neighbor_timeout: 3600
interfaces:
1:
native_vlan: 100
2
native_vlan: 100
3:
native_vlan: 100
4:
native_vlan: 200
5:
native_vlan: 200
vlans:
100:
faucet_vips: ["10.100.0.254/24"]
200:
faucet_vips: ["10.200.0.254/24"]
routers:

router—1:
vlans: [100, 200]

Then we restart Faucet:

$ docker restart faucet

Note: One should be able to tell Faucet to re-read its configuration file without restarting it. I sometimes saw
anomalous behavior when I did this, although I didn’t characterize it well enough to make a quality bug report. I found
restarting the container to be reliable.

OpenFlow Layer

Back in the OVS sandbox, let’s see how the flow table has changed, with:

S diff-flows flowsl br0

First, table 3 has new flows to direct ARP packets to table 6 (the virtual IP processing table), presumably to handle
ARP for the router IPs. New flows also send IP packets destined to a particular Ethernet address to table 4 (the L3
forwarding table); we can make the educated guess that the Ethernet address is the one used by the Faucet router:

+table=3 priority=9131,arp,dl_vlan=100 actions=goto_table:6
+table=3 priority=9131,arp,dl_vlan=200 actions=goto_table:6
+table=3 priority=9099,ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01 actions=goto_table:4
+table=3 priority=9099,ip,dl_vl1an=200,dl_dst=0e:00:00:00:00:01 actions=goto_table:4

The new flows in table 4 appear to be verifying that the packets are indeed addressed to a network or IP address that
Faucet knows how to route:

+table=4 priority=9131,ip,dl_vlan=100,nw_dst=10.100.0.254 actions=goto_table:6
+table=4 priority=9131,ip,dl_vlan=200,nw_dst=10.200.0.254 actions=goto_table:6

(continues on next page)

3.1. OVS Faucet Tutorial 67

Open vSwitch, Release 2.9.4

(continued from previous page)

+table=4 priority=9123,ip,dl_vlan=100,nw_dst=10.100.
+table=4 priority=9123,ip,dl_vlan=200,nw_dst=10.100.
+table=4 priority=9123,ip,dl_vlan=100,nw_dst=10.200.
+table=4 priority=9123,ip,dl_vlan=200,nw_dst=10.200.

.0/24 actions=goto_table:6
.0/24 actions=goto_table:6
.0/24 actions=goto_table:6
.0/24 actions=goto_table:6

O O O O

Table 6 has a few different things going on. It sends ARP requests for the router IPs to the controller; presumably the
controller will generate replies and send them back to the requester. It switches other ARP packets, either broadcasting
them if they have a broadcast destination or attempting to unicast them otherwise. It sends all other IP packets to the
controller:

+table=6 priority=9133,arp,arp_tpa=10.100.0.254 actions=CONTROLLER:128
+table=6 priority=9133,arp,arp_tpa=10.200.0.254 actions=CONTROLLER:128
+table=6 priority=9132,arp,dl_dst=ff:ff:ff:ff:ff:ff actions=goto_table:8
+table=6 priority=9131,arp actions=goto_table:7

+table=6 priority=9130,ip actions=CONTROLLER:128

Performance is clearly going to be poor if every packet that needs to be routed has to go to the controller, but it’s
unlikely that’s the full story. In the next section, we’ll take a closer look.

Tracing

As in our switching example, we can play some “what-if?”” games to figure out how this works. Let’s suppose that
a machine with IP 10.100.0.1, on port p1, wants to send a IP packet to a machine with IP 10.200.0.1 on port p4.
Assuming that these hosts have not been in communication recently, the steps to accomplish this are normally the
following:

1. Host 10.100.0.1 sends an ARP request to router 10.100.0.254.
. The router sends an ARP reply to the host.
. Host 10.100.0.1 sends an IP packet to 10.200.0.1, via the router’s Ethernet address.

2
3
4. The router broadcasts an ARP request to p4 and p5, the ports that carry the 10.200.0.<x> network.
5. Host 10.200.0.1 sends an ARP reply to the router.

6

. Either the router sends the IP packet (which it buffered) to 10.200.0.1, or eventually 10.100.0.1 times out and
resends it.

Let’s use ofproto/trace to see whether Faucet and OVS follow this procedure.

Before we start, save a new snapshot of the flow tables for later comparison:

$ save-flows br0 > flows2

Step 1: Host ARP for Router

Let’s simulate the ARP from 10.100.0.1 to its gateway router 10.100.0.254. This requires more detail than any of the
packets we’ve simulated previously:

$ ovs—appctl ofproto/trace br0 in_port=pl,dl_src=00:01:02:03:04:05,d1_
—dst=ff:ff:ff:ff:ff:£ff,dl_type=0x806,arp_spa=10.100.0.1,arp_tpa=10.100.0.254,arp_
—sha=00:01:02:03:04:05,arp_tha=ff:ff:ff:ff:ff:ff,arp_op=1 -generate

The important part of the output is where it shows that the packet was recognized as an ARP request destined to the
router gateway and therefore sent to the controller:

68 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

6. arp,arp_tpa=10.100.0.254, priority 9133, cookie 0Oxbadcl5cO
CONTROLLER:128

The Faucet log shows that Faucet learned the host’s MAC address, its MAC-to-IP mapping, and responded to the ARP
request:

Jan 06 16:12:23 faucet.valve INFO DPID 1 (0x1l) Adding new route 10.100.0.1/32 via,
—10.100.0.1 (00:01:02:03:04:05) on VLAN 100

Jan 06 16:12:23 faucet.valve INFO DPID 1 (0x1l) Responded to ARP request for 10.
—100.0.254 from 10.100.0.1 (00:01:02:03:04:05) on VLAN 100

Jan 06 16:12:23 faucet.valve INFO DPID 1 (0Ox1l) L2 learned 00:01:02:03:04:05 (L2,

—type 0x0806, L3 src 10.100.0.1) on Port 1 on VLAN 100 (1 hosts total)

We can also look at the changes to the flow tables:

S diff-flows flows2 br0

+table=3 priority=9098,in_port=1,dl_vlan=100,dl_src=00:01:02:03:04:05 hard_
—timeout=3600 actions=goto_table:7

+table=4 priority=9131,ip,dl_vlan=100,nw_dst=10.100.0.1 actions=set_field:4196->vlan_
—vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:01:02:03:04:05->eth_dst,dec_
—ttl,goto_table:7

+table=4 priority=9131,ip,dl_vl1an=200,nw_dst=10.100.0.1 actions=set_field:4196->vlan_
—vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:01:02:03:04:05->eth_dst,dec_
—ttl,goto_table:7

+table=7 priority=9099,dl_vlan=100,dl_dst=00:01:02:03:04:05 idle_timeout=3600_
—actions=pop_vlan,output:1l

The new flows include one in table 3 and one in table 7 for the learned MAC, which have the same forms we saw
before. The new flows in table 4 are different. They matches packets directed to 10.100.0.1 (in two VLANSs) and
forward them to the host by updating the Ethernet source and destination addresses appropriately, decrementing the
TTL, and skipping ahead to unicast output in table 7. This means that packets sent to 10.100.0.1 should now get to
their destination.

Step 2: Router Sends ARP Reply

inst/faucet. log said that the router sent an ARP reply. How can we see it? Simulated packets just get dropped
by default. One way is to configure the dummy ports to write the packets they receive to a file. Let’s try that. First
configure the port:

$ ovs-vsctl set interface pl options:pcap=pl.pcap

Then re-run the “trace” command:

$ ovs—appctl ofproto/trace br0 in_port=pl,dl_src=00:01:02:03:04:05,d1_
—dst=ff:ff:ff:ff:ff:£f,dl_type=0x806,arp_spa=10.100.0.1,arp_tpa=10.100.0.254,arp_
—sha=00:01:02:03:04:05,arp_tha=ff:ff:ff:ff:ff:ff,arp_op=1 -generate

And dump the reply packet:

$ /usr/sbin/tcpdump -evvvr sandbox/pl.pcap

reading from file sandbox/pl.pcap, link-type EN1OMB (Ethernet)

16:14:47.670727 0e:00:00:00:00:01 (oui Unknown) > 00:01:02:03:04:05 (oui Unknown),
—ethertype ARP (0x0806), length 60: Ethernet (len 6), IPv4 (len 4), Reply 10.100.0.
—~254 is—at 0e:00:00:00:00:01 (oui Unknown), length 46

3.1. OVS Faucet Tutorial 69

Open vSwitch, Release 2.9.4

We clearly see the ARP reply, which tells us that the Faucet router’s Ethernet address is 0e:00:00:00:00:01 (as we
guessed before from the flow table.

Let’s configure the rest of our ports to log their packets, too:

$ for 1 in 2 3 4 5; do ovs-vsctl set interface p$i options:pcap=p$i.pcap; done

Step 3: Host Sends IP Packet

Now that host 10.100.0.1 has the MAC address for its router, it can send an IP packet to 10.200.0.1 via the router’s
MAC address, like this:

$ ovs—appctl ofproto/trace br0 in_port=pl,dl_src=00:01:02:03:04:05,d1_
—dst=0e:00:00:00:00:01,udp,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_ttl=64 —generate
Flow: udp,in_port=1,vlan_tci=0x0000,dl_src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,
—nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=0

bridge ("br0O")

0. in_port=1, priority 9099, cookie 0x5adcl5cO
goto_table:1l

1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5cO
push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01, priority 9099, cookie 0Ox5adcl5cO
goto_table:4

4. ip,dl_vlan=100,nw_dst=10.200.0.0/24, priority 9123, cookie 0x5adcl5c0
goto_table:6

6. ip, priority 9130, cookie 0x5adcl5cO
CONTROLLER:128

Final flow: udp,in_port=1,dl_vlan=100,dl_vlan_pcp=0,vlan_tcil=0x0000,dl_
—src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,nw_src=10.100.0.1,nw_dst=10.200.0.1,
—nw_tos=0,nw_ecn=0,nw_ttl1=64,tp_src=0,tp_dst=0

Megaflow: recirc_id=0,eth,ip,in_port=1,vlan_tci=0x0000/0x1fff,dl_
—src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,nw_dst=10.200.0.0/25, nw_frag=no
Datapath actions: push_vlan(vid=100,pcp=0),userspace (pid=0,controller (reason=1,
—flags=0,recirc_id=6, rule_cookie=0x5adcl5c0, controller_id=0,max_len=128))

Observe that the packet gets recognized as destined to the router, in table 3, and then as properly destined to the
10.200.0.0/24 network, in table 4. In table 6, however, it gets sent to the controller. Presumably, this is because Faucet
has not yet resolved an Ethernet address for the destination host 10.200.0.1. It probably sent out an ARP request. Let’s
take a look in the next step.

Step 4: Router Broadcasts ARP Request

The router needs to know the Ethernet address of 10.200.0.1. It knows that, if this machine exists, it’s on port p4 or
p5, since we configured those ports as VLAN 200.

Let’s make sure:

$ /usr/sbin/tcpdump -evvvr sandbox/p4.pcap
reading from file sandbox/p4.pcap, link-type EN1OMB (Ethernet)

16:17:43.174006 0e:00:00:00:00:01 (oui Unknown) > Broadcast, ethertype ARP (0x0806),
lerngth 60: Bthernet (len &), IPv4 (len 4), Request who-has 10.200.0.1 tell 10 .200.0
Eh N N rT N T = . © ¥ 7= {continues oif neXt'page)

—254, length 46

70 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

and:

$ /usr/sbin/tcpdump -evvvr sandbox/p5.pcap

reading from file sandbox/p5.pcap, link-type EN1OMB (Ethernet)

16:17:43.174268 0e:00:00:00:00:01 (oui Unknown) > Broadcast, ethertype ARP (0x0806),
—length 60: Ethernet (len 6), IPv4 (len 4), Request who-has 10.200.0.1 tell 10.200.0.
—254, length 46

For good measure, let’s make sure that it wasn’t sent to p3:

$ /usr/sbin/tcpdump -evvvr sandbox/p3.pcap
reading from file sandbox/p3.pcap, link-type EN1OMB (Ethernet)

Step 5: Host 2 Sends ARP Reply

The Faucet controller sent an ARP request, so we can send an ARP reply:

$ ovs—appctl ofproto/trace br0 in_port=p4,dl_src=00:10:20:30:40:50,d1_
—dst=0e:00:00:00:00:01,d1l_type=0x806,arp_spa=10.200.0.1,arp_tpa=10.200.0.254,arp_
—sha=00:10:20:30:40:50,arp_tha=0e:00:00:00:00:01, arp_op=2 —generate

Flow: arp,in_port=4,vlan_tci=0x0000,dl_src=00:10:20:30:40:50,d1_dst=0e:00:00:00:00:01,
—arp_spa=10.200.0.1,arp_tpa=10.200.0.254, arp_op=2,arp_sha=00:10:20:30:40:50, arp_
—tha=0e:00:00:00:00:01

bridge ("br0O")

0. in_port=4, priority 9099, cookie 0Ox5adcl5cO
goto_table:1l

1. in_port=4,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5c0
push_vlan:0x8100
set_field:4296->vlan_vid
goto_table:3

3. arp,dl_vlan=200, priority 9131, cookie 0x5adcl5cO
goto_table:6

6. arp,arp_tpa=10.200.0.254, priority 9133, cookie 0x5adcl5cO
CONTROLLER:128

Final flow: arp,in_port=4,dl_vlan=200,dl_vlan_pcp=0,vlan_tcil=0x0000,dl_
—src=00:10:20:30:40:50,d1_dst=0e:00:00:00:00:01,arp_spa=10.200.0.1,arp_tpa=10.200.0.
—254,arp_op=2,arp_sha=00:10:20:30:40:50, arp_tha=0e:00:00:00:00:01

Megaflow: recirc_id=0,eth,arp,in_port=4,vlan_tci=0x0000/0x1fff,dl_
—dst=0e:00:00:00:00:01,arp_tpa=10.200.0.254

Datapath actions: push_vlan(vid=200,pcp=0),userspace (pid=0,controller (reason=1,
—~flags=0,recirc_id=7,rule_cookie=0x5adcl5c0, controller_id=0,max_len=128))

It shows upin inst/faucet.log:

Jan 06 03:20:11 faucet.valve INFO DPID 1 (0Oxl) Adding new route 10.200.0.1/32 via,
—10.200.0.1 (00:10:20:30:40:50) on VLAN 200

Jan 06 03:20:11 faucet.valve INFO DPID 1 (0Oxl) ARP response 10.200.0.1_
—(00:10:20:30:40:50) on VLAN 200

Jan 06 03:20:11 faucet.valve INFO DPID 1 (0x1l) L2 learned 00:10:20:30:40:50 (L2

—type 0x0806, L3 src 10.200.0.1) on Port 4 on VLAN 200 (1 hosts total)

3.1. OVS Faucet Tutorial 71

Open vSwitch, Release 2.9.4

and in the OVS flow tables:

$ diff-flows flows2 bro0

+table=3 priority=9098, in_port=4,dl_vlan=200,dl_src=00:10:20:30:40:50 hard_

—timeout=3601 actions=goto_table:7

+table=4 priority=9131,ip,dl_vl1an=200,nw_dst=10.200.0.1
—vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:
—ttl,goto_table:7

+table=4 priority=9131,ip,dl_vlan=100,nw_dst=10.200.0.1
—vid,set_field:0e:00:00:00:00:01->eth_src,set_field:00:

actions=set_field:4296—>vlan_
10:20:30:40:50->eth_dst,dec_

actions=set_field:4296->vlan_
10:20:30:40:50->eth_dst,dec_

—ttl,goto_table:7

+table=4 priority=9123,ip,dl_vlan=100,nw_dst=10.200.0.0/24 actions=goto_table:6
+table=7 priority=9099,dl_vlan=200,dl_dst=00:10:20:30:40:50 idle_timeout=3601_,
—actions=pop_vlan, output:4

Step 6: IP Packet Delivery

Now both the host and the router have everything they need to deliver the packet. There are two ways it might happen.
If Faucet’s router is smart enough to buffer the packet that trigger ARP resolution, then it might have delivered it
already. If so, then it should show up in p4 . pcap. Let’s take a look:

$ /usr/sbin/tcpdump -evvvr sandbox/p4.pcap ip

reading from file sandbox/p4.pcap, link-type EN1OMB (Ethernet)

Nope. That leaves the other possibility, which is that Faucet waits for the original sending host to re-send the packet.
We can do that by re-running the trace:

$ ovs—appctl ofproto/trace br0 in_port=pl,dl_src=00:01:02:03:04:05,d1_
—dst=0e:00:00:00:00:01,udp,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_ttl=64 —-generate
Flow: udp,in_port=1,vlan_tci=0x0000,dl_src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,
—nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=0

bridge ("br0O")

0. in_port=1, priority 9099, cookie 0x5adcl5cO
goto_table:1l

1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5c0
push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01, priority 9099, cookie 0Ox5adcl5cO
goto_table:4

4. ip,dl_vlan=100,nw_dst=10.200.0.1, priority 9131, cookie 0x5adcl5cO
set_field:4296-—>vlan_vid
set_field:0e:00:00:00:00:01->eth_src
set_field:00:10:20:30:40:50->eth_dst
dec_ttl
goto_table:7

7. dl_v1lan=200,dl_dst=00:10:20:30:40:50, priority 9099, cookie 0x5adcl5cO
pop_vlan
output:4

Final flow: udp,in_port=1,vlan_tci=0x0000,dl_src=0e:00:00:00:00:01,d1_
—dst=00:10:20:30:40:50,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0, nw_

=0

=63+t re=05+t ctst=0
7TEP— 7TEP— (continues on next page)

72 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

Megaflow: recirc_id=0,eth,ip,in_port=1,vlan_tci=0x0000/0x1fff,dl_
—src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,nw_dst=10.200.0.1,nw_ttl=64,nw_
—frag=no

Datapath actions: set (eth(src=0e:00:00:00:00:01,dst=00:10:20:30:40:50)),

—set (ipv4 (dst=10.200.0.1,tt1=63)),4

Finally, we have working IP packet forwarding!

Performance

Take another look at the megaflow line above:

Megaflow: recirc_id=0,eth, ip, in_port=1,vlan_tci=0x0000/0x1fff,dl_
—src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,nw_dst=10.200.0.1,nw_ttl=64,nw_
—frag=no

This means that (almost) any packet between these Ethernet source and destination hosts, destined to the given IP host,
will be handled by this single megaflow cache entry. So regardless of the number of UDP packets or TCP connections
that these hosts exchange, Open vSwitch packet processing won’t need to fall back to the slow path. It is quite efficient.

Note: The exceptions are packets with a TTL other than 64, and fragmented packets. Most hosts use a constant TTL
for outgoing packets, and fragments are rare. If either of those did change, then that would simply result in a new
megaflow cache entry.

The datapath actions might also be worth a look:

Datapath actions: set (eth(src=0e:00:00:00:00:01,dst=00:10:20:30:40:50)),
—set (ipv4 (dst=10.200.0.1,ttl1l=63)),4

This just means that, to process these packets, the datapath changes the Ethernet source and destination addresses and
the IP TTL, and then transmits the packet to port p4 (also numbered 4). Notice in particular that, despite the OpenFlow
actions that pushed, modified, and popped back off a VLAN, there is nothing in the datapath actions about VLANSs.
This is because the OVS flow translation code “optimizes out” redundant or unneeded actions, which saves time when
the cache entry is executed later.

Note: It’s not clear why the actions also re-set the IP destination address to its original value. Perhaps this is a minor
performance bug.

3.1.6 ACLs

Let’s try out some ACLs, since they do a good job illustrating some of the ways that OVS tries to optimize megaflows.
Update inst/faucet.yaml to the following:

dps:
switch-1:
dp_id: 0x1
timeout: 3600
arp_neighbor_timeout: 3600
interfaces:
1:

(continues on next page)

3.1. OVS Faucet Tutorial 73

Open vSwitch, Release 2.9.4

(continued from previous page)

native_vlan: 100
acl_in: 1

2
native_vlan: 100
3:
native_vlan: 100
4:
native_vlan: 200
5:
native_vlan: 200
vlans:
100:
faucet_vips: ["10.100.0.254/24"]
200:
faucet_vips: ["10.200.0.254/24"]
routers:
router—1:
vlans: [100, 200]
acls:
1:

- rule:
dl_type: 0x800
nw_proto: 6
tcp_dst: 8080

actions:
allow: O
- rule:
actions:
allow: 1

Then restart Faucet:

$ docker restart faucet

On port 1, this new configuration blocks all traffic to TCP port 8080 and allows all other traffic. The resulting change
in the flow table shows this clearly too:

S diff-flows flows2 br0

—priority=9099, in_port=1 actions=goto_table:1l
+priority=9098, in_port=1 actions=goto_table:1l
+priority=9099, tcp, in_port=1,tp_dst=8080 actions=drop

The most interesting question here is performance. If you recall the earlier discussion, when a packet through the flow
table encounters a match on a given field, the resulting megaflow has to match on that field, even if the flow didn’t
actually match. This is expensive.

In particular, here you can see that any TCP packet is going to encounter the ACL flow, even if it is directed to a port
other than 8080. If that means that every megaflow for a TCP packet is going to have to match on the TCP destination,
that’s going to be bad for caching performance because there will be a need for a separate megaflow for every TCP
destination port that actually appears in traffic, which means a lot more megaflows than otherwise. (Really, in practice,
if such a simple ACL blew up performance, OVS wouldn’t be a very good switch!)

Let’s see what happens, by sending a packet to port 80 (instead of 8080):

$ ovs—appctl ofproto/trace br0 in_port=pl,dl_src=00:01:02:03:04:05,d1_
—dst=0e:00:00:00:00:01,tcp,nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_ttl=64,tp_dst=80 -
—generate

(continues on next page)

74 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

Flow: tcp,in_port=1,vlan_tci=0x0000,dl_src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,
—nw_src=10.100.0.1,nw_dst=10.200.0.1,nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=80,
—tcp_£flags=0

bridge ("br0")

0. in_port=1, priority 9098, cookie 0x5adcl5cO
goto_table:1l

1. in_port=1,vlan_tci=0x0000/0x1fff, priority 9000, cookie 0x5adcl5c0
push_vlan:0x8100
set_field:4196->vlan_vid
goto_table:3

3. ip,dl_vlan=100,dl_dst=0e:00:00:00:00:01, priority 9099, cookie 0x5adcl5c0
goto_table:4

4. ip,dl_vlan=100,nw_dst=10.200.0.0/24, priority 9123, cookie 0x5adcl5c0
goto_table:6

6. ip, priority 9130, cookie 0x5adcl5cO
CONTROLLER:128

Final flow: tcp,in_port=1,dl_vlan=100,dl_vlan_pcp=0,vlian_tcil=0x0000,dl_
—src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,nw_src=10.100.0.1,nw_dst=10.200.0.1,
—nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=0,tp_dst=80,tcp_flags=0

Megaflow: recirc_id=0,eth,tcp, in_port=1,vlan_tci=0x0000/0x1fff,dl_
—~src=00:01:02:03:04:05,d1_dst=0e:00:00:00:00:01,nw_dst=10.200.0.1,nw_frag=no, tp_
—dst=0x0/0xf000

Datapath actions: push_vlan(vid=100,pcp=0)

Take a look at the Megaflow line and in particular the match on t p_dst, which says tp_dst=0x0/0x£000. What
this means is that the megaflow matches on only the top 4 bits of the TCP destination port. That works because:

80 (base 10) == 0000,0000,0101,0000 (base 2)
8080 (base 10) == 0001,1111,1001,0000 (base 2)

and so by matching on only the top 4 bits, rather than all 16, the OVS fast path can distinguish port 80 from port 8080.
This allows this megaflow to match one-sixteenth of the TCP destination port address space, rather than just 1/65536th
of it.

Note: The algorithm OVS uses for this purpose isn’t perfect. In this case, a single-bit match would work (e.g.
tp_dst=0x0/0x1000), and would be superior since it would only match half the port address space instead of one-
sixteenth.

For details of this algorithm, please refer to 1ib/classifier.c in the Open vSwitch source tree, or our 2015
NSDI paper “The Design and Implementation of Open vSwitch”.

3.1.7 Finishing Up

When you’re done, you probably want to exit the sandbox session, with Control+D or exit, and stop the Faucet
controller with docker stop faucet; docker rm faucet.

3.1.8 Further Directions

We’ve looked a fair bit at how Faucet interacts with Open vSwitch. If you still have some interest, you might want to
explore some of these directions:

3.1. OVS Faucet Tutorial 75

Open vSwitch, Release 2.9.4

* Adding more than one switch. Faucet can control multiple switches but we’ve only been simulating one of them.
It’s easy enough to make a single OVS instance act as multiple switches (just ovs-vsctl add-br another
bridge), or you could use genuinely separate OVS instances.

¢ Additional features. Faucet has more features than we’ve demonstrated, such as IPv6 routing and port mirroring.
These should also interact gracefully with Open vSwitch.

* Real performance testing. We’ve looked at how flows and traces should demonstrate good performance, but
of course there’s no proof until it actually works in practice. We’ve also only tested with trivial configurations.
Open vSwitch can scale to millions of OpenFlow flows, but the scaling in practice depends on the particular
flow tables and traffic patterns, so it’s valuable to test with large configurations, either in the way we’ve done it
or with real traffic.

3.2 Open vSwitch Advanced Features

Many tutorials cover the basics of OpenFlow. This is not such a tutorial. Rather, a knowledge of the basics of
OpenFlow is a prerequisite. If you do not already understand how an OpenFlow flow table works, please go read a
basic tutorial and then continue reading here afterward.

It is also important to understand the basics of Open vSwitch before you begin. If you have never used ovs-vsctl or
ovs-ofctl before, you should learn a little about them before proceeding.

Most of the features covered in this tutorial are Open vSwitch extensions to OpenFlow. Also, most of the features in
this tutorial are specific to the software Open vSwitch implementation. If you are using an Open vSwitch port to an
ASIC-based hardware switch, this tutorial will not help you.

This tutorial does not cover every aspect of the features that it mentions. You can find the details elsewhere in
the Open vSwitch documentation, especially ovs—ofctl (8) and the comments in the include/openflow/
nicira-ext.hand include/openvswitch/meta-flow.h header files.

3.2.1 Getting Started

This is a hands-on tutorial. To get the most out of it, you will need Open vSwitch binaries. You do not, on the
other hand, need any physical networking hardware or even supervisor privilege on your system. Instead, we will
use a script called ovs—-sandbox, which accompanies the tutorial, that constructs a software simulated network
environment based on Open vSwitch.

You can use ovs—sandbox three ways:

* If you have already installed Open vSwitch on your system, then you should be able to just run ovs-sandbox
from this directory without any options.

* If you have not installed Open vSwitch (and you do not want to install it), then you can build Open vSwitch
according to the instructions in Open vSwitch on Linux, FreeBSD and NetBSD, without installing it. Then run
./ovs-sandbox -b DIRECTORY from this directory, substituting the Open vSwitch build directory for
DIRECTORY.

* As a slight variant on the latter, you can run make sandbox from an Open vSwitch build directory.
When you run ovs-sandbox, it does the following:
1. CAUTION: Deletes any subdirectory of the current directory named “sandbox” and any files in that directory.
2. Creates a new directory “sandbox” in the current directory.

3. Sets up special environment variables that ensure that Open vSwitch programs will look inside the “sandbox”
directory instead of in the Open vSwitch installation directory.

76 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

4. If you are using a built but not installed Open vSwitch, installs the Open vSwitch manpages in a subdirectory of
“sandbox” and adjusts the MANPATH environment variable to point to this directory. This means that you can
use, for example, man ovs-vsctl to see a manpage for the ovs—-vsctl program that you built.

5. Creates an empty Open vSwitch configuration database under “sandbox”.
6. Starts ovsdb-server running under “sandbox”.

7. Starts ovs-vswitchd running under “sandbox”, passing special options that enable a special “dummy” mode
for testing.

8. Starts a nested interactive shell inside “sandbox”.

At this point, you can run all the usual Open vSwitch utilities from the nested shell environment. You can, for example,
use ovs—-vsctl to create a bridge:

$ ovs-vsctl add-br br0

From Open vSwitch’s perspective, the bridge that you create this way is as real as any other. You can, for example,
connect it to an OpenFlow controller or use ovs—ofctl to examine and modify it and its OpenFlow flow table. On
the other hand, the bridge is not visible to the operating system’s network stack, so ip cannot see it or affect it, which
means that utilities like ping and t cpdump will not work either. (That has its good side, too: you can’t screw up
your computer’s network stack by manipulating a sandboxed OVS.)

When you’re done using OVS from the sandbox, exit the nested shell (by entering the “exit” shell command or
pressing Control+D). This will kill the daemons that ovs—sandbox started, but it leaves the “sandbox” directory
and its contents in place.

The sandbox directory contains log files for the Open vSwitch dameons. You can examine them while you’re running
in the sandboxed environment or after you exit.

3.2.2 Using GDB

GDB support is not required to go through the tutorial. It is added in case user wants to explore the internals of OVS
programs.

GDB can already be used to debug any running process, with the usual gdb <program> <process-id> com-
mand.

ovs—sandbox also has a —g option for launching ovs-vswitchd under GDB. This option can be handy for setting
break points before ovs-vswitchd runs, or for catching early segfaults. Similarly, a —d option can be used to run
ovsdb-server under GDB. Both options can be specified at the same time.

In addition, a —e option also launches ovs-vswitchd under GDB. However, instead of displaying a gdb> prompt and
waiting for user input, ovs-vswitchd will start to execute immediately. —r option is the corresponding option for
running ovsdb-server under gdb with immediate execution.

To avoid GDB mangling with the sandbox sub shell terminal, ovs—sandbox starts a new xterm to run each GDB
session. For systems that do not support X windows, GDB support is effectively disabled.

When launching sandbox through the build tree’s make file, the —g option can be passed via the SANDBOXFLAGS
environment variable. make sandbox SANDBOXFLAGS=-g will start the sandbox with ovs-vswitchd running
under GDB in its own xterm if X is available.

3.2.3 Motivation

The goal of this tutorial is to demonstrate the power of Open vSwitch flow tables. The tutorial works through the
implementation of a MAC-learning switch with VLAN trunk and access ports. Outside of the Open vSwitch features
that we will discuss, OpenFlow provides at least two ways to implement such a switch:

3.2. Open vSwitch Advanced Features 77

Open vSwitch, Release 2.9.4

1. An OpenFlow controller to implement MAC learning in a “reactive” fashion. Whenever a new MAC appears on
the switch, or a MAC moves from one switch port to another, the controller adjusts the OpenFlow flow table to
match.

2. The “normal” action. OpenFlow defines this action to submit a packet to “the traditional non-OpenFlow pipeline

of the switch”. That is, if a flow uses this action, then the packets in the flow go through the switch in the same
way that they would if OpenFlow was not configured on the switch.

Each of these approaches has unfortunate pitfalls. In the first approach, using an OpenFlow controller to implement
MAC learning, has a significant cost in terms of network bandwidth and latency. It also makes the controller more
difficult to scale to large numbers of switches, which is especially important in environments with thousands of hy-
pervisors (each of which contains a virtual OpenFlow switch). MAC learning at an OpenFlow controller also behaves
poorly if the OpenFlow controller fails, slows down, or becomes unavailable due to network problems.

The second approach, using the “normal” action, has different problems. First, little about the “normal” action is
standardized, so it behaves differently on switches from different vendors, and the available features and how those
features are configured (usually not through OpenFlow) varies widely. Second, “normal” does not work well with
other OpenFlow actions. It is “all-or-nothing”, with little potential to adjust its behavior slightly or to compose it with
other features.

3.2.4 Scenario

We will construct Open vSwitch flow tables for a VLAN-capable, MAC-learning switch that has four ports:

pl
p2

p3,

a trunk port that carries all VLANs, on OpenFlow port 1.
an access port for VLAN 20, on OpenFlow port 2.
p4 both access ports for VLAN 30, on OpenFlow ports 3 and 4, respectively.

Note: The ports’ names are not significant. You could call them eth1 through eth4, or any other names you like.

Note: An OpenFlow switch always has a “local” port as well. This scenario won’t use the local port.

Our switch design will consist of five main flow tables, each of which implements one stage in the switch pipeline:

Table 0 Admission control.

Table 1 VLAN input processing.
Table 2 Learn source MAC and VLAN for ingress port.
Table 3 Look up learned port for destination MAC and VLAN.

Table 4 Output processing.

The section below describes how to set up the scenario, followed by a section for each OpenFlow table.

You can cut and paste the ovs—vsctl and ovs—ofctl commands in each of the sections below into your
ovs—sandbox shell. They are also available as shell scripts in this directory, named t-setup, t—-stage0,
t-stagel, ..., t—staged. The ovs—appctl test commands are intended for cutting and pasting and are not
supplied separately.

3.2.5 Setup

To get started, start ovs—sandbox. Inside the interactive shell that it starts, run this command:

78

Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

$ ovs-vsctl add-br br0 —-- set Bridge br0 fail-mode=secure

This command creates a new bridge “br0” and puts “br0” into so-called “fail-secure” mode. For our purpose, this just
means that the OpenFlow flow table starts out empty.

Note: If we did not do this, then the flow table would start out with a single flow that executes the “normal” action.
We could use that feature to yield a switch that behaves the same as the switch we are currently building, but with the
caveats described under ‘“Motivation” above.)

The new bridge has only one port on it so far, the “local port” br0. We need to add p1, p2, p3, and p4. A shell for
loop is one way to do it:

for 1 in 1 2 3 4; do
ovs-vsctl add-port br0 p$i -- set Interface p$i ofport_request=5$i
ovs-ofctl mod-port br0 pS$i up

done

In addition to adding a port, the ovs—vsct 1l command above sets its of port_request column to ensure that port
p1l is assigned OpenFlow port 1, p2 is assigned OpenFlow port 2, and so on.

Note: We could omit setting the ofport_request and let Open vSwitch choose port numbers for us, but it’s convenient
for the purposes of this tutorial because we can talk about OpenFlow port 1 and know that it corresponds to p1.

The ovs—-ofctl command above brings up the simulated interfaces, which are down initially, using an OpenFlow
request. The effect is similar to ip link up, but the sandbox’s interfaces are not visible to the operating system
and therefore ip would not affect them.

We have not configured anything related to VLANSs or MAC learning. That’s because we’re going to implement those
features in the flow table.

To see what we’ve done so far to set up the scenario, you can run a command like ovs-vsctl showorovs—-ofctl
show bro0.

3.2.6 Implementing Table 0: Admission control

Table O is where packets enter the switch. We use this stage to discard packets that for one reason or another are
invalid. For example, packets with a multicast source address are not valid, so we can add a flow to drop them at
ingress to the switch with:

$ ovs—ofctl add-flow br0 \
"table=0, dl_src=01:00:00:00:00:00/01:00:00:00:00:00, actions=drop"

A switch should also not forward IEEE 802.1D Spanning Tree Protocol (STP) packets, so we can also add a flow to
drop those and other packets with reserved multicast protocols:

$ ovs—ofctl add-flow br0 \
"table=0, dl_dst=01:80:c2:00:00:00/ff:ff:ff:ff:£ff:£f0, actions=drop"

We could add flows to drop other protocols, but these demonstrate the pattern.

‘We need one more flow, with a priority lower than the default, so that flows that don’t match either of the “drop” flows
we added above go on to pipeline stage 1 in OpenFlow table 1:

3.2. Open vSwitch Advanced Features 79

Open vSwitch, Release 2.9.4

$ ovs—-ofctl add-flow br0 "table=0, priority=0, actions=resubmit(,1)"

Note: The “resubmit” action is an Open vSwitch extension to OpenFlow.

3.2.7 Testing Table 0

If we were using Open vSwitch to set up a physical or a virtual switch, then we would naturally test it by sending
packets through it one way or another, perhaps with common network testing tools like ping and t cpdump or more
specialized tools like Scapy. That’s difficult with our simulated switch, since it’s not visible to the operating system.

But our simulated switch has a few specialized testing tools. The most powerful of these tools is ofproto/trace.
Given a switch and the specification of a flow, ofproto/trace shows, step-by-step, how such a flow would be
treated as it goes through the switch.

Example 1

Try this command:

$ ovs—appctl ofproto/trace br0 in_port=1,dl_dst=01:80:c2:00:00:05

The output should look something like this:

Flow: in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1l_dst=01:80:c2:00:00:05,d1_
—type=0x0000

bridge ("br0")
0. dl_dst=01:80:¢c2:00:00:00/ff:£ff£:£f£f:££:££f:£f0, priority 32768
drop

Final flow: unchanged

Megaflow: recirc_id=0, in_port=1,dl_src=00:00:00:00:00:00/01:00:00:00:00:00,d1_
—dst=01:80:¢c2:00:00:00/ff:ff:ff:£f£:££:£0,d1l_type=0x0000

Datapath actions: drop

The first line shows the flow being traced, in slightly greater detail than specified on the command line. It is mostly
zeros because unspecified fields default to zeros.

The second group of lines shows the packet’s trip through bridge br0. We see, in table 0, the OpenFlow flow that the
fields matched, along with its priority, followed by its actions, one per line. In this case, we see that this packet that
has a reserved multicast destination address matches the flow that drops those packets.

The final block of lines summarizes the results, which are not very interesting here.

Example 2

Try another command:

$ ovs—appctl ofproto/trace br0 in_port=1,dl_dst=01:80:c2:00:00:10

The output should be:

80 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

Flow: in_port=1,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1l_dst=01:80:¢c2:00:00:10,d1_
—type=0x0000

bridge ("br0™")
0. priority 0
resubmit (, 1)
1. No match.
drop

Final flow: unchanged

Megaflow: recirc_id=0, in_port=1,dl_src=00:00:00:00:00:00/01:00:00:00:00:00,d1_
—dst=01:80:¢c2:00:00:10/ff:ff:ff:£f£:££:£0,d1l_type=0x0000

Datapath actions: drop

This time the flow we handed to ofproto/trace doesn’t match any of our “drop” flows in table 0, so it falls through
to the low-priority “resubmit” flow. The “resubmit” causes a second lookup in OpenFlow table 1, described by the
block of text that starts with “1.” We haven’t yet added any flows to OpenFlow table 1, so no flow actually matches in
the second lookup. Therefore, the packet is still actually dropped, which means that the externally observable results
would be identical to our first example.

3.2.8 Implementing Table 1: VLAN Input Processing

A packet that enters table 1 has already passed basic validation in table 0. The purpose of table 1 is validate the
packet’s VLAN, based on the VLAN configuration of the switch port through which the packet entered the switch. We
will also use it to attach a VLAN header to packets that arrive on an access port, which allows later processing stages
to rely on the packet’s VLAN always being part of the VLAN header, reducing special cases.

Let’s start by adding a low-priority flow that drops all packets, before we add flows that pass through acceptable
packets. You can think of this as a “default drop” flow:

$ ovs-ofctl add-flow br0 "table=1l, priority=0, actions=drop"

Our trunk port p1, on OpenFlow port 1, is an easy case. pl accepts any packet regardless of whether it has a VLAN
header or what the VLAN was, so we can add a flow that resubmits everything on input port 1 to the next table:

$ ovs—-ofctl add-flow br0 \
"table=1, priority=99, in_port=1l, actions=resubmit(,2)"

On the access ports, we want to accept any packet that has no VLAN header, tag it with the access port’s VLAN
number, and then pass it along to the next stage:

$ ovs-ofctl add-flows br0 - <<'EOF'

table=1, priority=99, in_port=2, vlan_tci=0, actions=mod_vlan_vid:20, resubmit (,2)
table=1, priority=99, in_port=3, vlan_tci=0, actions=mod_vlan_vid:30, resubmit (,2)
table=1, priority=99, in_port=4, vlan_tci=0, actions=mod_vlan_vid:30, resubmit (,2)
EOF

We don’t write any flows that match packets with 802.1Q that enter this stage on any of the access ports, so the “default
drop” flow we added earlier causes them to be dropped, which is ordinarily what we want for access ports.

Note: Another variation of access ports allows ingress of packets tagged with VLAN 0 (aka 802.1p priority tagged
packets). To allow such packets, replace vlan_tci=0 by vlian_tci=0/0xfff above.

3.2. Open vSwitch Advanced Features 81

Open vSwitch, Release 2.9.4

3.2.9 Testing Table 1

ofproto/trace allows us to test the ingress VLAN flows that we added above.

Example 1: Packet on Trunk Port

Here’s a test of a packet coming in on the trunk port:

$ ovs—appctl ofproto/trace br0 in_port=1,vlan_tci=5

The output shows the lookup in table 0, the resubmit to table 1, and the resubmit to table 2 (which does nothing
because we haven’t put anything there yet):

Flow: in_port=1,vlan_tci=0x0005,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:00:00,d1_
—type=0x0000

bridge ("br0™")
0. priority 0
resubmit (, 1)
1. in_port=1, priority 99
resubmit (, 2)
2. No match.
drop

Final flow: unchanged

Megaflow: recirc_id=0, in_port=1,dl_src=00:00:00:00:00:00/01:00:00:00:00:00,d1_
—dst=00:00:00:00:00:00/ff:£ff:ff:ff:£f£f:£0,dl_type=0x0000

Datapath actions: drop

Example 2: Valid Packet on Access Port

Here’s a test of a valid packet (a packet without an 802.1Q header) coming in on access port p2:

$ ovs—appctl ofproto/trace br0 in_port=2

The output is similar to that for the previous case, except that it additionally tags the packet with p2’s VLAN 20 before
it passes it along to table 2:

Flow: in_port=2,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1l_dst=00:00:00:00:00:00,d1_
—type=0x0000

bridge ("br0")

0. priority O
resubmit (, 1)

1. in_port=2,vlan_tci=0x0000, priority 99
mod_vlan_vid:20
resubmit (, 2)

2. No match.
drop

Final flow: in_port=2,dl_vlan=20,dl_vlan_pcp=0,dl_src=00:00:00:00:00:00,d1_
—dst=00:00:00:00:00:00,d1_type=0x0000

(continues on next page)

82 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

Megaflow: recirc_id=0,in_port=2,vlan_tci=0x0000,dl_src=00:00:00:00:00:00/
—01:00:00:00:00:00,d1_dst=00:00:00:00:00:00/ff:ff:ff:£ff:£f£:£0,d1l_type=0x0000
Datapath actions: drop

Example 3: Invalid Packet on Access Port

This tests an invalid packet (one that includes an 802.1Q header) coming in on access port p2:

$ ovs—appctl ofproto/trace br0 in_port=2,vlan_tci=5

The output shows the packet matching the default drop flow:

Flow: in_port=2,vlan_tci=0x0005,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:00:00,d1_
—type=0x0000

bridge ("br0™")
0. priority 0
resubmit (, 1)
1. priority 0
drop

Final flow: unchanged

Megaflow: recirc_id=0,in_port=2,vlan_tci=0x0005,dl_src=00:00:00:00:00:00/
—01:00:00:00:00:00,d1_dst=00:00:00:00:00:00/ff:ff:ff:ff:ff:£0,dl_type=0x0000
Datapath actions: drop

3.2.10 Implementing Table 2: MAC+VLAN Learning for Ingress Port

This table allows the switch we’re implementing to learn that the packet’s source MAC is located on the packet’s
ingress port in the packet’s VLAN.

Note: This table is a good example why table 1 added a VLAN tag to packets that entered the switch through an access
port. We want to associate a MAC+VLAN with a port regardless of whether the VLAN in question was originally part
of the packet or whether it was an assumed VLAN associated with an access port.

It only takes a single flow to do this. The following command adds it:

S ovs—-ofctl add-flow br0 \

"table=2 actions=learn(table=10, NXM_OF_ VLAN_TCI[O..11], \
NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[], \
load:NXM_OF_IN_PORT[]->NXM _NX_REGO[0..151), \

resubmit (,3)"

The “learn” action (an Open vSwitch extension to OpenFlow) modifies a flow table based on the content of the flow
currently being processed. Here’s how you can interpret each part of the “learn” action above:

table=10 Modify flow table 10. This will be the MAC learning table.

NXM_OF_VLAN_TCI[O0..11] Make the flow that we add to flow table 10 match the same VLAN ID that the packet
we’re currently processing contains. This effectively scopes the MAC learning entry to a single VLAN, which
is the ordinary behavior for a VLAN-aware switch.

3.2. Open vSwitch Advanced Features 83

Open vSwitch, Release 2.9.4

NXM_OF ETH DST[]=NXM _OF_ETH SRC[] Make the flow that we add to flow table 10 match, as Ethernet des-
tination, the Ethernet source address of the packet we’re currently processing.

load:NXM OF_IN_PORT[]->NXM NX REGO[O0..15] Whereas the preceding parts specify fields for the new
flow to match, this specifies an action for the flow to take when it matches. The action is for the flow to load
the ingress port number of the current packet into register 0 (a special field that is an Open vSwitch extension to
OpenFlow).

Note: A real use of “learn” for MAC learning would probably involve two additional elements. First, the “learn”
action would specify a hard_timeout for the new flow, to enable a learned MAC to eventually expire if no new packets
were seen from a given source within a reasonable interval. Second, one would usually want to limit resource con-
sumption by using the Flow_Table table in the Open vSwitch configuration database to specify a maximum number of
flows in table 10.

This definitely calls for examples.

3.2.11 Testing Table 2

Example 1

Try the following test command:

$ ovs—appctl ofproto/trace br0 \
in_port=1,vlan_tci=20,dl_src=50:00:00:00:00:01 —-generate

The output shows that “learn” was executed in table 2 and the particular flow that was added:

Flow: in_port=1,vlan_tci=0x0014,dl_src=50:00:00:00:00:01,d1l_dst=00:00:00:00:00:00,d1_
—type=0x0000

bridge ("br0™")
0. priority 0
resubmit (, 1)
1. in_port=1, priority 99
resubmit (, 2)
2. priority 32768
learn (table=10,NXM _OF_VLAN_TCI[0..11],NXM _OF_ETH DST[]=NXM_OF_ETH_SRC[], load:NXM_
<+OF_IN_PORT[]->NXM_NX_REGO[0..15])
-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 priority=32768_
—actions=load:0x1->NXM_NX_REGO[0..15]
resubmit (, 3)
3. No match.
drop

Final flow: unchanged

Megaflow: recirc_id=0, in_port=1,vlan_tci=0x0014/0x1fff,dl_src=50:00:00:00:00:01,d1_
—dst=00:00:00:00:00:00/ff:ff:ff:££:££:£0,d1l_type=0x0000

Datapath actions: drop

The —generate keyword is new. Ordinarily, ofproto/trace has no side effects: “output” actions do not ac-
tually output packets, “learn” actions do not actually modify the flow table, and so on. With ~generate, though,
ofproto/trace does execute “learn” actions. That’s important now, because we want to see the effect of the
“learn” action on table 10. You can see that by running:

84 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

$ ovs-ofctl dump-flows br0 table=10

which (omitting the duration and idle_age fields, which will vary based on how soon you ran this command
after the previous one, as well as some other uninteresting fields) prints something like:

NXST_FLOW reply (xid=0x4):
table=10, vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 actions=load:0x1->NXM_NX_
—REGO[0..15]

You can see that the packet coming in on VLAN 20 with source MAC 50:00:00:00:00:01 became a flow that
matches VLAN 20 (written in hexadecimal) and destination MAC 50:00:00:00:00:01. The flow loads port
number 1, the input port for the flow we tested, into register 0.

Example 2

Here’s a second test command:

$ ovs—appctl ofproto/trace br0 \
in_port=2,dl_src=50:00:00:00:00:01 -generate

The flow that this command tests has the same source MAC and VLAN as example 1, although the VLAN comes from
an access port VLAN rather than an 802.1Q header. If we again dump the flows for table 10 with:

$ ovs-ofctl dump-flows br0 table=10

then we see that the flow we saw previously has changed to indicate that the learned port is port 2, as we would expect:

NXST_FLOW reply (xid=0x4):
table=10, vlan_tci=0x0014/0x0fff,dl_dst=50:00:00:00:00:01 actions=load:0x2->NXM_NX_
—REGO[0..15]

3.2.12 Implementing Table 3: Look Up Destination Port

This table figures out what port we should send the packet to based on the destination MAC and VLAN. That is, if
we’ve learned the location of the destination (from table 2 processing some previous packet with that destination as its
source), then we want to send the packet there.

We need only one flow to do the lookup:

$ ovs-ofctl add-flow br0 \
"table=3 priority=50 actions=resubmit (,10), resubmit (,4)"

The flow’s first action resubmits to table 10, the table that the “learn” action modifies. As you saw previously, the
learned flows in this table write the learned port into register 0. If the destination for our packet hasn’t been learned,
then there will be no matching flow, and so the “resubmit” turns into a no-op. Because registers are initialized to 0, we
can use a register 0 value of 0 in our next pipeline stage as a signal to flood the packet.

The second action resubmits to table 4, continuing to the next pipeline stage.

We can add another flow to skip the learning table lookup for multicast and broadcast packets, since those should
always be flooded:

$ ovs-ofctl add-flow br0 \
"table=3 priority=99 dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 \
actions=resubmit (,4)"

3.2. Open vSwitch Advanced Features 85

Open vSwitch, Release 2.9.4

Note: We don’t strictly need to add this flow, because multicast addresses will never show up in our learning table.
(In turn, that’s because we put a flow into table 0 to drop packets that have a multicast source address.)

3.2.13 Testing Table 3

Example

Here’s a command that should cause OVS to learn that f0:00:00:00:00:01 ison p1 in VLAN 20:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_vlan=20,dl_src=£f0:00:00:00:00:01,d1_dst=90:00:00:00:00:01 \
—generate

The output shows (from the “no match” looking up the resubmit to table 10) that the flow’s destination was unknown:

Flow: in_port=1,dl_vlan=20,dl_vlan_pcp=0,dl_src=£0:00:00:00:00:01,d1_
—dst=90:00:00:00:00:01,d1l_type=0x0000

bridge ("br0™")
0. priority 0
resubmit (, 1)
1. in_port=1, priority 99
resubmit (, 2)
2. priority 32768
learn (table=10,NXM _OF_VLAN_TCI[0O..11],NXM OF_ETH DST[]=NXM_OF_ETH_SRC[], load:NXM_
—OF_IN_PORT[]->NXM_NX_REGO[O0..15])
-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01 priority=32768_
—actions=load:0x1->NXM_NX_REGO[0..15]
resubmit (, 3)
3. priority 50
resubmit (,10)
10. No match.
drop
resubmit (,4)
4. No match.
drop

Final flow: unchanged

Megaflow: recirc_id=0,in_port=1,dl_vlan=20,dl_src=£f0:00:00:00:00:01,d1_
—dst=90:00:00:00:00:01,d1_type=0x0000

Datapath actions: drop

There are two ways that you can verify that the packet’s source was learned. The most direct way is to dump the
learning table with:

$ ovs-ofctl dump-flows br0 table=10

which ought to show roughly the following, with extraneous details removed:

table=10, vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01 actions=load:0x1->NXM_NX_
—REGO[0..15]

86 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

Note: If you tried the examples for the previous step, or if you did some of your own experiments, then you might
see additional flows there. These additional flows are harmless. If they bother you, then you can remove them with
ovs-ofctl del-flows br0 table=10.

The other way is to inject a packet to take advantage of the learning entry. For example, we can inject a packet on p2
whose destination is the MAC address that we just learned on pl:

$ ovs—appctl ofproto/trace br0 \
in_port=2,dl_src=90:00:00:00:00:01,d1_dst=£f0:00:00:00:00:01 —-generate

Here is this command’s output. Take a look at the lines that trace the resubmit (, 10), showing that the packet
matched the learned flow for the first MAC we used, loading the OpenFlow port number for the learned port p1 into
register 0:

Flow: in_port=2,vlan_tci=0x0000,dl_src=90:00:00:00:00:01,d1_dst=£f0:00:00:00:00:01,d1_
—type=0x0000

bridge ("br0™")
0. priority 0
resubmit (, 1)
1. in_port=2,vlan_tci=0x0000, priority 99
mod_vlan_vid:20
resubmit (, 2)
2. priority 32768
learn (table=10,NXM_OF_VLAN_TCI[O..11],NXM_OF_ETH _DST[]=NXM_OF_ETH_SRC[], load:NXM_
< OF_IN_PORT[]->NXM_NX_REGO[0..15])
-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=90:00:00:00:00:01 priority=32768_
—sactions=load:0x2->NXM _NX_REGO[0..15]
resubmit (, 3)
3. priority 50
resubmit (, 10)
10. vlan_tci=0x0014/0x0fff,dl_dst=£f0:00:00:00:00:01, priority 32768
load:0x1->NXM NX_REGO[0..15]
resubmit (, 4)
4. No match.
drop

Final flow: reg0=0x1l,in_port=2,dl_vlan=20,dl_vlan_pcp=0,dl_src=90:00:00:00:00:01,d1_
—dst=£0:00:00:00:00:01,d1_type=0x0000

Megaflow: recirc_id=0, in_port=2,vlan_tci=0x0000,dl_src=90:00:00:00:00:01,d1_
—dst=£f0:00:00:00:00:01,d1_type=0x0000

Datapath actions: drop

If you read the commands above carefully, then you might have noticed that they simply have the Ethernet source and
destination addresses exchanged. That means that if we now rerun the first ovs—appct 1l command above, e.g.:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_vlan=20,dl_src=£f0:00:00:00:00:01,d1_dst=90:00:00:00:00:01 \
—generate

then we see in the output, looking at the indented “load” action executed in table 10, that the destination has now been
learned:

Flow: in_port=1,dl_vlan=20,dl_vlan_pcp=0,dl_src=£f0:00:00:00:00:01,d1_
—dst=90:00:00:00:00:01,d1l_type=0x0000

(continues on next page)

3.2. Open vSwitch Advanced Features 87

Open vSwitch, Release 2.9.4

(continued from previous page)

bridge ("br0™")
0. priority 0
resubmit (, 1)
1. in_port=1, priority 99
resubmit (, 2)
2. priority 32768
learn (table=10,NXM OF VLAN TCI[O..11],NXM OF _ETH DST[]=NXM_OF_ETH SRC[],load:NXM_
—OF_IN_PORT[]->NXM_NX_REGO[0..15])
-> table=10 vlan_tci=0x0014/0x0fff,dl_dst=f0:00:00:00:00:01 priority=32768_
—actions=load:0x1->NXM_NX_REGO[0..15]
resubmit (, 3)
3. priority 50
resubmit (, 10)
10. vlan_tci=0x0014/0x0fff,dl_dst=90:00:00:00:00:01, priority 32768
load:0x2->NXM_NX_REGO[0..15]
resubmit (, 4)
4. No match.
drop

3.2.14 Implementing Table 4: Output Processing

At entry to stage 4, we know that register 0 contains either the desired output port or is zero if the packet should be
flooded. We also know that the packet’s VLAN is in its 802.1Q header, even if the VLAN was implicit because the
packet came in on an access port.

The job of the final pipeline stage is to actually output packets. The job is trivial for output to our trunk port p1:

$ ovs-ofctl add-flow br0 "table=4 reg0=1 actions=1"

For output to the access ports, we just have to strip the VLAN header before outputting the packet:

$ ovs-ofctl add-flows br0 - <<'EOF'
table=4 reg0=2 actions=strip_vlan,2
table=4 reg0=3 actions=strip_vlan, 3
table=4 reg0=4 actions=strip_vlan,4
EOF

The only slightly tricky part is flooding multicast and broadcast packets and unicast packets with unlearned destina-
tions. For those, we need to make sure that we only output the packets to the ports that carry our packet’s VLAN, and
that we include the 802.1Q header in the copy output to the trunk port but not in copies output to access ports:

$ ovs-ofctl add-flows br0 - <<'EOF'

table=4 reg0=0 priority=99 dl_vlan=20 actions=1,strip_vlan,2
table=4 reg0=0 priority=99 dl_vlan=30 actions=1,strip_vlan,3,4
table=4 reg0=0 priority=50 actions=1

EOF

Note: Our flows rely on the standard OpenFlow behavior that an output action will not forward a packet back out the
port it came in on. That is, if a packet comes in on p1, and we’ve learned that the packet’s destination MAC is also on
pl, so that we end up with actions=1 as our actions, the switch will not forward the packet back out its input port.
The multicast/broadcast/unknown destination cases above also rely on this behavior.

88 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

3.2.15 Testing Table 4

Example 1: Broadcast, Multicast, and Unknown Destination

Try tracing a broadcast packet arriving on p1 in VLAN 30:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=30

The interesting part of the output is the final line, which shows that the switch would remove the 802.1Q header and
then output the packet to p3 and p4, which are access ports for VLAN 30:

’Datapath actions: pop_vlan, 3,4

Similarly, if we trace a broadcast packet arriving on p3:

’$ ovs—appctl ofproto/trace br0 in_port=3,dl_dst=ff:ff:ff:ff:ff:ff

then we see that it is output to p1 with an 802.1Q tag and then to p4 without one:

’Datapath actions: push_vlan(vid=30,pcp=0),1,pop_vlan, 4

Note: Open vSwitch could simplify the datapath actions here to just 4, push_vlan (vid=30, pcp=0), 1 but it
is not smart enough to do so.

The following are also broadcasts, but the result is to drop the packets because the VLAN only belongs to the input
port:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:£ff,dl_vlan=55

Try some other broadcast cases on your own:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=ff:ff:ff:ff:ff:ff,dl_vlan=20

$ ovs—appctl ofproto/trace br0 \
in_port=2,dl_dst=ff:ff:ff:ff:ff:ff

$ ovs—appctl ofproto/trace br0 \
in_port=4,dl_dst=ff:ff:ff:ff:ff:ff

You can see the same behavior with multicast packets and with unicast packets whose destination has not been learned,
e.g.:

$ ovs—appctl ofproto/trace br0 \
in_port=4,dl_dst=01:00:00:00:00:00

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=90:12:34:56:78:90,d1l_vlan=20

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_dst=90:12:34:56:78:90,d1_vlan=30

Example 2: MAC Learning

Let’s follow the same pattern as we did for table 3. First learn a MAC on port p1 in VLAN 30:

3.2. Open vSwitch Advanced Features 89

Open vSwitch, Release 2.9.4

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_vlan=30,dl_src=10:00:00:00:00:01,d1_dst=20:00:00:00:00:01 \
—generate

You can see from the last line of output that the packet’s destination is unknown, so it gets flooded to both p3 and p4,
the other ports in VLAN 30:

Datapath actions: pop_vlan, 3,4

Then reverse the MACs and learn the first flow’s destination on port p4:

$ ovs—appctl ofproto/trace br0 \
in_port=4,dl_src=20:00:00:00:00:01,d1_dst=10:00:00:00:00:01 —-generate

The last line of output shows that the this packet’s destination is known to be pl, as learned from our previous
command:

Datapath actions: push_vlan(vid=30,pcp=0),1

Now, if we rerun our first command:

$ ovs—appctl ofproto/trace br0 \
in_port=1,dl_vlan=30,dl_src=10:00:00:00:00:01,d1_dst=20:00:00:00:00:01 \
—generate

... we can see that the result is no longer a flood but to the specified learned destination port p4:

Datapath actions: pop_vlan,4

Contact

bugs @openvswitch.org http://openvswitch.org/

3.3 OVN Sandbox

This tutorial shows you how to explore features using ovs—sandbox as a simulated test environment. It’s assumed
that you have an understanding of OVS before going through this tutorial. Detail about OVN is covered in ovn-
architecture, but this tutorial lets you quickly see it in action.

3.3.1 Getting Started

For some general information about ovs—sandbox, see the “Getting Started” section of the tutorial.

ovs-sandbox does not include OVN support by default. To enable OVN, you must pass the ——ovn flag. For
example, if running it straight from the ovs git tree you would run:

S make sandbox SANDBOXFLAGS="--ovn"

Running the sandbox with OVN enabled does the following additional steps to the environment:

1. Creates the OVN_Northbound and OVN_Southbound databases as described in ovn-nb(5) and ovn-sb(5).

90 Chapter 3. Tutorials

mailto:bugs@openvswitch.org
http://openvswitch.org/
http://openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://openvswitch.org/support/dist-docs/ovn-nb.5.html
http://openvswitch.org/support/dist-docs/ovn-sb.5.html

Open vSwitch, Release 2.9.4

2. Creates a backup server for OVN_Southbond database. Sandbox launch screen provides the instructions on
accessing the backup database. However access to the backup server is not required to go through the tutorial.

3. Creates the hardware_vtep database as described in vtep(5).
4. Runs the ovn-northd(8), ovn-controller(8), and ovn-controller-vtep(8) daemons.

5. Makes OVN and VTEP utilities available for use in the environment, including vtep-ctl(8), ovn-nbctl(8), and
ovn-sbctl(8).

3.3.2 Using GDB

GDB support is not required to go through the tutorial. See the “Using GDB” section of the tutorial for more info.
Additional flags exist for launching the debugger for the OVN programs:

——gdb-ovn-northd
—-—gdb-ovn-controller
——gdb-ovn-controller-vtep

3.3.3 Creating OVN Resources

Once you have ovs—sandbox running with OVN enabled, you can start using OVN utilities to create resources in
OVN. As an example, we will create an environment that has two logical switches connected by a logical router.

Create the first logical switch with one port:

$ ovn-nbctl ls-add sw0
$ ovn-nbctl lsp-add sw0 swO-portl
$ ovn-nbctl lsp-set-addresses swO-portl "50:54:00:00:00:01 192.168.0.2"

Create the second logical switch with one port:

$ ovn-nbctl ls-add swl
$ ovn-nbctl lsp-add swl swl-portl
$ ovn-nbctl lsp-set-addresses swl-portl "50:54:00:00:00:03 11.0.0.2"

Create the logical router and attach both logical switches:

ovn-nbctl lr-add 1r0

ovn-nbctl lrp-add 1lr0 lrpO0 00:00:00:00:ff:01 192.168.0.1/24
ovn-nbctl lsp-add swO lrpO-attachment

ovn—-nbctl lsp-set-type lrpO-attachment router

ovn—nbctl lsp-set—-addresses lrpO-attachment 00:00:00:00:££:01
ovn-nbctl lsp-set-options lrpO-attachment router-port=1lrp0
ovn-nbctl lrp-add 1r0 lrpl 00:00:00:00:ff:02 11.0.0.1/24
ovn—nbctl lsp-add swl lrpl-attachment

ovn—nbctl lsp-set-type lrpl-attachment router

ovn-nbctl lsp-set-addresses lrpl-attachment 00:00:00:00:£f£:02
ovn—nbctl lsp-set-options lrpl-attachment router-port=lrpl

v W Uy O Ay 0y

View a summary of OVN'’s current logical configuration:

$ ovn-nbctl show
switch 1396¢cf55-d176-4082-9a55-1c06cef626ed (swl)
port lrpl-attachment
addresses: ["00:00:00:00:££:02"]

(continues on next page)

3.3. OVN Sandbox 91

http://openvswitch.org/support/dist-docs/vtep.5.html
http://openvswitch.org/support/dist-docs/ovn-northd.8.html
http://openvswitch.org/support/dist-docs/ovn-controller.8.html
http://openvswitch.org/support/dist-docs/ovn-controller-vtep.8.html
http://openvswitch.org/support/dist-docs/vtep-ctl.8.html
http://openvswitch.org/support/dist-docs/ovn-nbctl.8.html
http://openvswitch.org/support/dist-docs/ovn-sbctl.8.html

Open vSwitch, Release 2.9.4

(continued from previous page)

port swl-portl
addresses: ["50:54:00:00:00:03 11.0.0.2"]
switch 2¢c9d6d03-09fc-4e32-8da6-305f129b0d53 (swO0)
port lrpO-attachment
addresses: ["00:00:00:00:££:01"]
port swO-portl
addresses: ["50:54:00:00:00:01 192.168.0.2"]
router £8377e8c-f75e-4fc8-8751-f3eal03c6dd98 (1r0)
port lrp0
mac: "00:00:00:00:££:01"
networks: ["192.168.0.1/24"]
port lrpl
mac: "00:00:00:00:ff£:02"
networks: ["11.0.0.1/24"]

The tutorial directory of the OVS source tree includes a script that runs all of the commands for you:

$./ovn-setup.sh

3.3.4 Using ovn-trace
Once you have configured resources in OVN, try using ovn-trace to see how OVN would process a sample packet
through its logical pipeline.

For example, we can trace an IP packet from swO-portl to swl-portl. The ——minimal output shows each
visible action performed on the packet, which includes:

1. The logical router will decrement the IP TTL field.
2. The logical router will change the source and destination MAC addresses to reflect the next hop.

3. The packet will be output to swl-portl.

$ ovn-trace ——minimal swO 'inport == "swO-portl" \

> && eth.src == 50:54:00:00:00:01 && ipd.src == 192.168.0.2 \
> && eth.dst == 00:00:00:00:££f:01 && ipd.dst == 11.0.0.2 \

> && ip.ttl == 64"

ip,regld=0x1,vlan_tci=0x0000,dl_src=50:54:00:00:00:01,d1_dst=00:00:00:00:££:01, nw__
—src=192.168.0.2,nw_dst=11.0.0.2,nw_proto=0,nw_tos=0,nw_ecn=0,nw_ttl=64

ip.ttl-—;

eth.src = 00:00:00:00:££:02;

eth.dst = 50:54:00:00:00:03;

output ("swl-portl");

The ovn-trace utility can also provide much more detail on how the packet would be processed through OVN’s
logical pipeline, as well as correlate that to OpenFlow flows programmed by ovn-controller. See the ovn-
trace(8) man page for more detail.

3.4 OVN OpenStack Tutorial

This tutorial demonstrates how OVN works in an OpenStack “DevStack” environment. It was tested with the “master”
branches of DevStack and Open vSwitch near the beginning of May 2017. Anyone using an earlier version is likely

92 Chapter 3. Tutorials

http://openvswitch.org/support/dist-docs/ovn-trace.8.html
http://openvswitch.org/support/dist-docs/ovn-trace.8.html

Open vSwitch, Release 2.9.4

to encounter some differences. In particular, we noticed some shortcomings in OVN utilities while writing the tutorial
and pushed out some improvements, so it’s best to use recent Open vSwitch at least from that point of view.

The goal of this tutorial is to demonstrate OVN in an end-to-end way, that is, to show how it works from the cloud
management system at the top (in this case, OpenStack and specifically its Neutron networking subsystem), through
the OVN northbound and southbound databases, to the bottom at the OVN local controller and Open vSwitch data
plane. We hope that this demonstration makes it easier for users and potential users to understand how OVN works
and how to debug and troubleshoot it.

In addition to new material, this tutorial incorporates content from testing. rst in OpenStack networking-ovn, by
Russell Bryant and others. Without that example, this tutorial could not have been written.

We provide enough details in the tutorial that you should be able to fully follow along, by creating a DevStack VM
and cloning DevStack and so on. If you want to do this, start out from Serting Up DevStack below.

3.4.1 Setting Up DevStack

This section explains how to install DevStack, a kind of OpenStack packaging for developers, in a way that allows you
to follow along with the tutorial in full.

Unless you have a spare computer laying about, it’s easiest to install DevStacck in a virtual machine. This tutorial was
built using a VM implemented by KVM and managed by virt-manager. I recommend configuring the VM configured
for the x86-64 architecture, 4 GB RAM, 2 VCPUs, and a 20 GB virtual disk.

Note: If you happen to run your Linux-based host with 32-bit userspace, then you will have some special issues, even
if you use a 64-bit kernel:

* You may find that you can get 32-bit DevStack VMs to work to some extent, but I personally got tired of
finding workarounds. I recommend running your VMs in 64-bit mode. To get this to work, I had to go to the
CPUs tab for the VM configuration in virt-manager and change the CPU model from the one originally listed to
“Hypervisor Default’ (it is curious that this is not the default!).

* On a host with 32-bit userspace, KVM supports VMs with at most 2047 MB RAM. This is adequate, barely,
to start DevStack, but it is not enough to run multiple (nested) VMs. To prevent out-of-memory failures, set up
extra swap space in the guest. For example, to add 2 GB swap:

$ sudo dd if=/dev/zero of=/swapfile bs=1M count=2048
$ sudo mkswap /swapfile
$ sudo swapon /swapfile

and then add a line like this to /et c/fstab to add the new swap automatically upon reboot:

/swapfile swap swap defaults 0 O

Here are step-by-step instructions to get started:
1. Install a VM.

I tested these instructions with Centos 7.3. Download the “minimal install” ISO and booted it. The install is
straightforward. Be sure to enable networking, and set a host name, such as “ovn-devstack-1”. Add a regular
(non-root) user, and check the box ‘“Make this user administrator”. Also, set your time zone.

2. You can SSH into the DevStack VM, instead of running from a console. I recommend it because it’s easier to
cut and paste commands into a terminal than a VM console. You might also consider using a very wide terminal,
perhaps 160 columns, to keep tables from wrapping.

To improve convenience further, you can make it easier to log in with the following steps, which are optional:

3.4. OVN OpenStack Tutorial 93

Open vSwitch, Release 2.9.4

(a) On your host, edit your ~/ . ssh/config, adding lines like the following:

Host ovn-devstack-1
Hostname VMIP
User VMUSER

where VMIP is the VM’s IP address and VMUSER is your username inside the VM. (You can omit the
User line if your username is the same in the host and the VM.) After you do this, you can SSH to the VM
by name, e.g. ssh ovn-devstack-1, and if command-line completion is set up in your host shell, you
can shorten that to something like ssh ovn followed by hitting the Tab key.

(b) If you have SSH public key authentication set up, with an SSH agent, run on your host:

$ ssh-copy-id ovn-devstack-1

and type your password once. Afterward, you can log in without typing your password again.

(If you don’t already use SSH public key authentication and an agent, consider looking into it—it will save
you time in the long run.)

(c) Optionally, inside the VM, append the following to your ~/ .bash_profile:

SHOME/devstack/openrc admin

It will save you running it by hand each time you log in. But it also prints garbage to the console, which
can screw up services like ssh—copy—1id, so be careful.

2. Boot into the installed system and log in as the regular user, then install Git:

$ sudo yum install git

Note: If you installed a 32-bit i386 guest (against the advice above), install a non-PAE kernel and reboot into
it at this point:

$ sudo yum install kernel-core kernel-devel
$ sudo reboot

Be sure to select the non-PAE kernel from the list at boot. Without this step, DevStack will fail to install properly
later.

3. Get copies of DevStack and OVN and set them up:

git clone http://git.openstack.org/openstack-dev/devstack.git
git clone http://git.openstack.org/openstack/networking-ovn.git
cd devstack

cp ../networking-ovn/devstack/local.conf.sample local.conf

v r W

Note: If you installed a 32-bit 1386 guest (against the advice above), at this point edit 1local. conf to add the
following line:

CIRROS_ARCH=1386

4. Initialize DevStack:

94 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

$./stack.sh

This will spew many screenfuls of text, and the first time you run it, it will download lots of software from the
Internet. The output should eventually end with something like this:

This is your host IP address: 172.16.189.6

This is your host IPv6 address: ::1

Horizon is now available at http://172.16.189.6/dashboard
Keystone is serving at http://172.16.189.6/identity/

The default users are: admin and demo

The password: password

2017-03-09 15:10:54.117 | stack.sh completed in 2110 seconds.

If there’s some kind of failure, you can restart by running . /stack. sh again. It won’t restart exactly where it
left off, but steps up to the one where it failed will skip the download steps. (Sometimes blindly restarting after
a failure will allow it to succeed.) If you reboot your VM, you need to rerun this command. (If you run into
trouble with stack. sh after rebooting your VM, try running . /unstack.sh.)

At this point you can navigate a web browser on your host to the Horizon dashboard URL. Many OpenStack
operations can be initiated from this UI. Feel free to explore, but this tutorial focuses on the alternative command-
line interfaces because they are easier to explain and to cut and paste.

5. As of this writing, you need to run the following to fix a problem with using VM consoles from the OpenStack
web instance:

$ (cd /opt/stack/noVNC && git checkout v0.6.0)

See https://serenity-networks.com/how-to-fix-setkeycodes-00-and-unknown-key-pressed-console-errors-on-openstack/
for more details.

6. The firewall in the VM by default allows SSH access but not HTTP. You will probably want HTTP access to use
the OpenStack web interface. The following command enables that. (It also enables every other kind of network
access, so if you’re concerned about security then you might want to find a more targeted approach.)

’$ sudo iptables -F ‘

(You need to re-run this if you reboot the VM.)

7. To use OpenStack command line utilities in the tutorial, run:

’$. ~/devstack/openrc admin

This needs to be re-run each time you log in (but see the following section).

3.4.2 DevStack preliminaries

Before we really jump in, let’s set up a couple of things in DevStack. This is the first real test that DevStack is working,
so if you get errors from any of these commands, it’s a sign that stack . sh didn’t finish properly, or perhaps that you
didn’t run the openrc admin command at the end of the previous instructions.

If you stop and restart DevStack via unstack. sh followed by stack. sh, you have to rerun these steps.

1. For SSH access to the VMs we’re going to create, we’ll need a SSH keypair. Later on, we’ll get OpenStack to
install this keypair into VMs. Create one with:

$ openstack keypair create demo > ~/id_rsa_demo
S chmod 600 ~/id_rsa_demo

3.4. OVN OpenStack Tutorial 95

https://serenity-networks.com/how-to-fix-setkeycodes-00-and-unknown-key-pressed-console-errors-on-openstack/

Open vSwitch, Release 2.9.4

2. By default, DevStack security groups drop incoming traffic, but to test networking in a reasonable way we need
to enable it. You only need to actually edit one particular security group, but DevStack creates multiple and
it’s somewhat difficult to figure out which one is important because all of them are named “default”. So, the
following adds rules to allow SSH and ICMP traffic into every security group:

$ for group in $ (openstack security group list -f value -c ID); do \

openstack security group rule create --ingress —--ethertype IPv4 —--dst-port 22 —-—
—protocol tcp $group; \

openstack security group rule create --ingress —--ethertype IPv4 —--protocol ICMP
—Sgroup; \

done

3. Later on, we’re going to create some VMs and we’ll need an operating system image to install. DevStack comes
with a very simple image built-in, called “cirros”, which works fine. We need to get the UUID for this image.
Our later commands assume shell variable IMAGE_ ID holds this UUID. You can set this by hand, e.g.:

$ openstack image list

o o o +
| ID | Name | Status |
e e +——— +
| 77£37d2c-3d6b-4e99-a0lb-1fab5d78d1lfal | cirros-0.3.5-x86_64-disk | active |
e o o +

$ IMAGE_ID=73ca34f3-63c4-4cl0-a62f-4540afc24eaa

or by parsing CLI output:

$ IMAGE_ID=S$ (openstack image list -f value -c ID)

Note: Your image ID will differ from the one above, as will every UUID in this tutorial. They will also change
every time you run stack . sh. The UUIDs are generated randomly.

3.4.3 Shortening UUIDs

OpenStack, OVN, and Open vSwitch all really like UUIDs. These are great for uniqueness, but 36-character strings
are terrible for readability. Statistically, just the first few characters are enough for uniqueness in small environments,
so let’s define a helper to make things more readable:

$ abbrev() { a='[0-9a-fA-F]' b=aa c=bSb; sed "s/S$Sb-$c-$c-$c-cScc//g"; }

You can use this as a filter to abbreviate UUIDs. For example, use it to abbreviate the above image list:

$ openstack image list —-f yaml | abbrev
- ID: 77£37d
Name: cirros-0.3.5-x86_64-disk
Status: active

The command above also adds —f yaml to switch to YAML output format, because abbreviating UUIDs screws up
the default table-based formatting and because YAML output doesn’t produce wrap columns across lines and therefore
is easier to cut and paste.

96 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

3.4.4 Overview

Now that DevStack is ready, with OVN set up as the networking back-end, here’s an overview of what we’re going to
do in the remainder of the demo, all via OpenStack:

1.

A

7.

Switching: Create an OpenStack network n1 and VMs a and b attached to it.
An OpenStack network is a virtual switch; it corresponds to an OVN logical switch.

Routing: Create a second OpenStack network n2 and VM c attached to it, then connect it to network n1 by
creating an OpenStack router and attaching n1 and n2 to it.

Gateways: Make VMs a and b available via an external network.

IPv6: Add IPv6 addresses to our VMs to demonstrate OVN support for IPv6 routing.
ACLs: Add and modify OpenStack stateless and stateful rules in security groups.
DHCP: How it works in OVN.

Further directions: Adding more compute nodes.

At each step, we will take a look at how the features in question work from OpenStack’s Neutron networking layer at
the top to the data plane layer at the bottom. From the highest to lowest level, these layers and the software components
that connect them are:

* OpenStack Neutron, which as the top level in the system is the authoritative source of the virtual network

configuration.

We will use OpenStack’s openstack utility to observe and modify Neutron and other OpenStack configura-
tion.

networking-ovn, the Neutron driver that interfaces with OVN and translates the internal Neutron representation
of the virtual network into OVN'’s representation and pushes that representation down the OVN northbound
database.

In this tutorial it’s rarely worth distinguishing Neutron from networking-ovn, so we usually don’t break out this
layer separately.

The OVN Northbound database, aka NB DB. This is an instance of OVSDB, a simple general-purpose database
that is used for multiple purposes in Open vSwitch and OVN. The NB DB’s schema is in terms of networking
concepts such as switches and routers. The NB DB serves the purpose that in other systems might be filled by
some kind of API; for example, in place of calling an API to create or delete a logical switch, networking-ovn
performs these operations by inserting or deleting a row in the NB DB’s Logical_Switch table.

We will use OVN’s ovn—nbct1 utility to observe the NB DB. (We won’t directly modify data at this layer or
below. Because configuration trickles down from Neutron through the stack, the right way to make changes is
to use the openstack utility or another OpenStack interface and then wait for them to percolate through to
lower layers.)

The ovn-northd daemon, a program that runs centrally and translates the NB DB’s network representation into
the lower-level representation used by the OVN Southbound database in the next layer. The details of this
daemon are usually not of interest, although without it OVN will not work, so this tutorial does not often
mention it.

The OVN Southbound database, aka SB DB, which is also an OVSDB database. Its schema is very different
from the NB DB. Instead of familiar networking concepts, the SB DB defines the network in terms of collections
of match-action rules called “logical flows”, which while similar in concept to OpenFlow flows use logical
concepts, such as virtual machine instances, in place of physical concepts like physical Ethernet ports.

We will use OVN’s ovn—-sbct1 utility to observe the SB DB.

3.4. OVN OpenStack Tutorial 97

Open vSwitch, Release 2.9.4

* The ovn-controller daemon. A copy of ovn-controller runs on each hypervisor. It reads logical flows from the
SB DB, translates them into OpenFlow flows, and sends them to Open vSwitch’s ovs-vswitchd daemon. Like
ovn-northd, usually the details of what this daemon are not of interest, even though it’s important to the operation
of the system.

* ovs-vswitchd. This program runs on each hypervisor. It is the core of Open vSwitch, which processes packets
according to the OpenFlow flows set up by ovn-controller.

* Open vSwitch datapath. This is essentially a cache designed to accelerate packet processing. Open vSwitch
includes a few different datapaths but OVN installations typically use one based on the Open vSwitch Linux
kernel module.

3.4.5 Switching

Switching is the basis of networking in the real world and in virtual networking as well. OpenStack calls its concept
of a virtual switch a “network”, and OVN calls its corresponding concept a “logical switch”.

In this step, we’ll create an OpenStack network n1, then create VMs a and b and attach them to n1.

Creating network n1

Let’s start by creating the network:

$ openstack network create —--project admin --provider-network-type geneve nl

OpenStack needs to know the subnets that a network serves. We inform it by creating subnet objects. To keep it
simple, let’s give our network a single subnet for the 10.1.1.0/24 network. We have to give it a name, in this case
nlsubnet:

$ openstack subnet create —--subnet-range 10.1.1.0/24 --network nl nlsubnet

If you ask Neutron to show us the available networks, we see n1 as well as the two networks that DevStack creates by
default:

$ openstack network list -f yaml | abbrev
— ID: 5bo6baf
Name: nl
Subnets: 5e67e7
— ID: c02c4d
Name: private
Subnets: d88a34, fd87f9
- ID: dlac28
Name: public
Subnets: 0ble79, c87dcl

Neutron pushes this network setup down to the OVN northbound database. We can use ovn—nbctl show to see an
overview of what’s in the NB DB:

S ovn-nbctl show | abbrev
switch 5b3d5f (neutron-c02c4d) (aka private)
port b256dd
type: router
router-port: lrp-b256dd
port f264e7
type: router

(continues on next page)

98 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

router-port: lrp-f264e7
switch 2579f4 (neutron-dlac28) (aka public)
port provnet-dlac28
type: localnet
addresses: ["unknown"]
port ae9%pb52
type: router
router-port: lrp-ae9b52
switch 3eb263 (neutron-5bébaf) (aka nl)
router c59%9ad2 (neutron-9b057f) (aka routerl)
port lrp-ae9b52
mac: "fa:16:3e:b2:d2:67"
networks: ["172.24.4.9/24", "2001:db8::b/64"]
port lrp-b256dd
mac: "fa:16:3e:35:33:db"
networks: ["fdb0:5860:4ba8::1/64"]
port lrp-f264e7
mac: "fa:16:3e:fc:c8:da"
networks: ["10.0.0.1/26"]
nat 80914c
external ip: "172.24.4.9"
logical ip: "10.0.0.0/26"
type: "snat"

This output shows that OVN has three logical switches, each of which corresponds to a Neutron network, and a logical
router that corresponds to the Neutron router that DevStack creates by default. The logical switch that corresponds
to our new network n1 has no ports yet, because we haven’t added any. The public and private networks that
DevStack creates by default have router ports that connect to the logical router.

Using ovn-northd, OVN translates the NB DB’s high-level switch and router concepts into lower-level concepts of
“logical datapaths” and logical flows. There’s one logical datapath for each logical switch or router:

$ ovn-sbctl list datapath_binding | abbrev

_uuid : 0ade9od

external_ids : {logical-switch="5b3d5f", name="neutron-c02c4d", "name2
—"=private}

tunnel_key 1

_uuid : a8a’758

external_ ids : {logical-switch="3eb263", name="neutron-5bobaf", "name2"="nl"}
tunnel_key H!

_uuid : 191256

external_ids : {logical-switch="2579f4", name="neutron-dlac28", "name2"=public}
tunnel_key : 3

_uuid : b87bec

external_ids : {logical-router="c59%9ad2", name="neutron-9b057f", "name2"=
—~"routerl"}

tunnel_key 2

This output lists the NB DB UUIDs in external_ids:logical-switch and Neutron UUIDs in externals_ids:uuid. We can
dive in deeper by viewing the OVN logical flows that implement a logical switch. Our new logical switch is a simple
and almost pathological example given that it doesn’t yet have any ports attached to it. We’ll look at the details a bit
later:

3.4. OVN OpenStack Tutorial 99

Open vSwitch, Release 2.9.4

S ovn-sbctl 1flow-list nl | abbrev

Datapath: "neutron-5bébaf" aka "nl" (a8a758) Pipeline: ingress
table=0 (ls_in_port_sec_12), priority=100 , match=(eth.src[40]), action=(drop;)
table=0 (ls_in_port_sec_12), priority=100 , match=(vlan.present), action=(drop;)

Datapath: "neutron-5bébaf" aka "nl" (a8a758) Pipeline: egress
table=0 (ls_out_pre_1lb), priority=0 , match=(1), action=(next;)
table=1 (ls_out_pre_acl), priority=0 , match=(1), action=(next;)

We have one hypervisor (aka “compute node”, in OpenStack parlance), which is the one where we’re running all
these commands. On this hypervisor, ovn-controller is translating OVN logical flows into OpenFlow flows (“physical
flows”). It makes sense to go deeper, to see the OpenFlow flows that get generated from this datapath. By adding
——ovs to the ovn—sbct 1l command, we can see OpenFlow flows listed just below their logical flows. We also need
to use sudo because connecting to Open vSwitch is privileged. Go ahead and try it:

$ sudo ovn-sbctl —--ovs 1lflow-list nl | abbrev

Datapath: "neutron-5b6baf" aka "nl" (a8a758) Pipeline: ingress
table=0 (ls_in_port_sec_12), priority=100 , match=(eth.src[40]), action=(drop;)
table=0 (ls_in_port_sec_12), priority=100 , match=(vlan.present), action=(drop;)

Datapath: "neutron-5bé6baf" aka "nl" (a8a758) Pipeline: egress
table=0 (ls_out_pre_1lb), priority=0 , match=(1), action=(next;)
table=1 (ls_out_pre_acl), priority=0 , match=(1), action=(next;)

You were probably disappointed: the output didn’t change, and no OpenFlow flows were printed. That’s because
no OpenFlow flows are installed for this logical datapath, which in turn is because there are no VIFs for this logical
datapath on the local hypervisor. For a better example, you can try ovn—-sbctl —--ovs on one of the other logical
datapaths.

Attaching VMs

A switch without any ports is not very interesting. Let’s create a couple of VMs and attach them to the switch. Run
the following commands, which create VMs named a and b and attaches them to our network n1 with IP addresses
10.1.1.5 and 10.1.1.6, respectively. It is not actually necessary to manually assign IP address assignments, since
OpenStack is perfectly happy to assign them itself from the subnet’s IP address range, but predictable addresses are
useful for our discussion:

$ openstack server create --nic net-id=nl,v4-fixed-ip=10.1.1.5 --flavor ml.nano —--—
—~image $IMAGE_ID --key-name demo a
$ openstack server create —--nic net-id=nl,v4-fixed-ip=10.1.1.6 —--flavor ml.nano —-

—image S$IMAGE_ID --key-name demo b

These commands return before the VMs are really finished being built. You can run openstack server lista
few times until each of them is shown in the state ACTIVE, which means that they’re not just built but already running
on the local hypervisor.

These operations had the side effect of creating separate “port” objects, but without giving those ports any easy-to-read
names. It’ll be easier to deal with them later if we can refer to them by name, so let’s name a’s port ap and b’s port
bp:

$ openstack port set —--name ap $ (openstack port list —--server a —-f value -c ID)
$ openstack port set —--name bp $ (openstack port list —--server b -f value -c ID)

We’ll need to refer to these ports” MAC addresses a few times, so let’s put them in variables:

100 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

$ AP_MAC=$ (openstack port show —-f value -c mac_address ap)
$ BP_MAC=S (openstack port show -f value -c mac_address bp)

At this point you can log into the consoles of the VMs if you like. You can do that from the OpenStack web interface
or get a direct URL to paste into a web browser using a command like:

$ openstack console url show -f yaml a

(The option —f yaml keeps the URL in the output from being broken into noncontiguous pieces on a 80-column
console.)

The VMs don’t have many tools in them but ping and ssh from one to the other should work fine. The VMs do not
have any external network access or DNS configuration.

Let’s chase down what’s changed in OVN. Start with the NB DB at the top of the system. It’s clear that our logical
switch now has the two logical ports attached to it:

$ ovn-nbctl show | abbrev

switch 3eb263 (neutron-5b6ébaf) (aka nl)
port c29d41 (aka bp)
addresses: ["fa:16:3e:99:7a:17 10.1.1.6"]
port 820c08 (aka ap)
addresses: ["fa:16:3e:a9:4c:c7 10.1.1.5"]

We can get some more details on each of these by looking at their NB DB records in the Logical_Switch_Port table.
Each port has addressing information, port security enabled, and a pointer to DHCP configuration (which we’ll look
at much later in DHCP):

$ ovn-nbctl list logical_switch_port ap bp | abbrev

_uuid : efl7eb

addresses : ["fa:16:3e:a9:4c:c7 10.1.1.5"]
dhcpv4_options : 165974

dhcpvé_options |

dynamic_addresses : 0]

enabled : true

external_ids : {"neutron:port_name"=ap}

name : "820c08"

options : {}

parent_name |

port_security : ["fa:16:3e:a9:4c:c7 10.1.1.5"]
tag ¢ [

tag_request ¢ [

type HEA

up : true

_uuid . e8afl2

addresses : ["fa:16:3e:99:7a:17 10.1.1.6"]
dhcpv4_options : 165974

dhcpv6_options 0]

dynamic_addresses [

enabled : true

external_ids : {"neutron:port_name"=bp}

name : "c29d41"

options {1}

parent_name N

(continues on next page)

3.4. OVN OpenStack Tutorial 101

Open vSwitch, Release 2.9.4

(continued from previous page)

port_security "fa:16:3e:99:7a:17 10.1.1.6"]

[
(

tag]
tag_request ¢ [
type mw
up : true

Now that the logical switch is less pathological, it’s worth taking another look at the SB DB logical flow table. Try a
command like this:

$ ovn-sbctl 1lflow-list nl | abbrev | less -S

and then glance through the flows. Packets that egress a VM into the logical switch travel through the flow table’s
ingress pipeline starting from table 0. At each table, the switch finds the highest-priority logical flow that matches and
executes its actions, or if there’s no matching flow then the packet is dropped. The ovn-sb(5) manpage gives all the
details, but with a little thought it’s possible to guess a lot without reading the manpage. For example, consider the
flows in ingress pipeline table 0, which are the first flows encountered by a packet traversing the switch:

table=0 (ls_in_port_sec_12), priority=100 , match=(eth.src[40]), action=(drop;)

table=0 (ls_in_port_sec_12), priority=100 , match=(vlan.present), action=(drop;)
table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "820c08" && eth.src,
== {fa:16:3e:a9:4c:c7}), action=(next;)

table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "c29d41" && eth.src,

== {fa:16:3e:99:7a:17}), action=(next;)

The first two flows, with priority 100, immediately drop two kinds of invalid packets: those with a multicast or
broadcast Ethernet source address (since multicast is only for packet destinations) and those with a VLAN tag (because
OVN doesn’t yet support VLAN tags inside logical networks). The next two flows implement L2 port security: they
advance to the next table for packets with the correct Ethernet source addresses for their ingress ports. A packet that
does not match any flow is implicitly dropped, so there’s no need for flows to deal with mismatches.

The logical flow table includes many other flows, some of which we will look at later. For now, it’s most worth looking
at ingress table 13:

table=13(1ls_in_12_1lkup), priority=100 , match=(eth.mcast), action=(outport = "_
—MC_flood"; output;)

table=13(ls_in_12_1lkup), priority=50 , match=(eth.dst == fa:16:3e:99:7a:17),
—action=(outport = "c29d41"; output;)

table=13(1ls_in_12_1lkup), priority=50 , match=(eth.dst == fa:16:3e:a9:4c:c7),
—action= (outport = "820c08"; output;)

The first flow in table 13 checks whether the packet is an Ethernet multicast or broadcast and, if so, outputs it to a
special port that egresses to every logical port (other than the ingress port). Otherwise the packet is output to the port
corresponding to its Ethernet destination address. Packets addressed to any other Ethernet destination are implicitly
dropped.

(It’s common for an OVN logical switch to know all the MAC addresses supported by its logical ports, like this one.
That’s why there’s no logic here for MAC learning or flooding packets to unknown MAC addresses. OVN does support
unknown MAC handling but that’s not in play in our example.)

Note: If you're interested in the details for the multicast group, you can run a command like the following and then
look at the row for the correct datapath:

$ ovn-sbctl find multicast_group name=_MC_flood | abbrev

102 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

Now if you want to look at the OpenFlow flows, you can actually see them. For example, here’s the beginning of
the output that lists the first four logical flows, which we already looked at above, and their corresponding OpenFlow
flows. If you want to know more about the syntax, the ovs—fields(7) manpage explains OpenFlow matches and
ovs—ofct1(8) explains OpenFlow actions:

S sudo ovn-sbctl —--ovs l1lflow-list nl | abbrev
Datapath: "neutron-5bé6baf" aka "nl" (a8a758) Pipeline: ingress
table=0 (ls_in_port_sec_12), priority=100 , match=(eth.src[40]), action=(drop;)
table=8 metadata=0x4,dl_src=01:00:00:00:00:00/01:00:00:00:00:00 actions=drop

table=0 (ls_in_port_sec_12), priority=100 , match=(vlan.present), action=(drop;)
table=8 metadata=0x4,vlan_tci=0x1000/0x1000 actions=drop
table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "820c08" && eth.src_
== {fa:16:3e:a9:4c:c7}), action=(next;)
table=8 regl4=0x1l,metadata=0x4,dl_src=fa:16:3e:a9:4c:c7 actions=resubmit (,9)
table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "c29d41" && eth.src_

== {fa:16:3e:99:7a:17}), action=(next;)
table=8 regl4=0x2,metadata=0x4,dl_src=fa:16:3e:99:7a:17 actions=resubmit (,9)

Logical Tracing

Let’s go a level deeper. So far, everything we’ve done has been fairly general. We can also look at something more
specific: the path that a particular packet would take through OVN, logically, and Open vSwitch, physically.

Let’s use OVN'’s ovn-trace utility to see what happens to packets from a logical point of view. The ovn—trace(8)
manpage has a lot of detail on how to do that, but let’s just start by building up from a simple example. You can start
with a command that just specifies the logical datapath, an input port, and nothing else; unspecified fields default to
all-zeros. This doesn’t do much:

$ ovn-trace nl 'inport == "ap"'

ingress (dp="nl", inport="ap")

0. ls_in_port_sec_12: no match (implicit drop)

We see that the packet was dropped in logical table 0, “Is_in_port_sec_12”, the L2 port security stage (as we discussed
earlier). That’s because we didn’t use the right Ethernet source address for a. Let’s see what happens if we do:

$ ovn-trace nl 'inport == "ap" && eth.src == 'S$SAP_MAC

ingress (dp="nl", inport="ap")

0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "ap" && eth.src ==
—{fa:16:3e:a9:4c:c7}, priority 50, uuid 6dcc4l8a
next;

13. 1ls_in_12_1lkup: no match (implicit drop)

Now the packet passes through L2 port security and skips through several other tables until it gets dropped in the L.2
lookup stage (because the destination is unknown). Let’s add the Ethernet destination for b:

$ ovn-trace nl 'inport == "ap" && eth.src == 'SAP_MAC' && eth.dst == 'S$BP_MAC

ingress (dp="nl", inport="ap")
0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "ap" && eth.src ==
—~{fa:16:3e:a9:4c:c7}, priority 50, uuid 6dcc4l8a

(continues on next page)

3.4. OVN OpenStack Tutorial 103

Open vSwitch, Release 2.9.4

(continued from previous page)

next;
13. 1s_in_12_1kup (ovn-northd.c:3529): eth.dst == fa:16:3e:99:7a:17, priority 50,
—uuid 57a4dcdef

outport = "bp";

output;

egress (dp="nl", inport="ap", outport="bp")

8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "bp" && eth.dst ==
—~{fa:16:3e:99:7a:17}, priority 50, uuid 8aa6426d

output;

/+ output to "bp", type "" */

You can see that in this case the packet gets properly switched from a to b.

Physical Tracing for Hypothetical Packets

ovn-trace showed us how a hypothetical packet would travel through the system in a logical fashion, that is, without
regard to how VMs are distributed across the physical network. This is a convenient representation for understanding
how OVN is supposed to work abstractly, but sometimes we might want to know more about how it actually works in
the real systems where it is running. For this, we can use the tracing tool that Open vSwitch provides, which traces a
hypothetical packet through the OpenFlow tables.

We can actually get two levels of detail. Let’s start with the version that’s easier to interpret, by physically tracing a
packet that looks like the one we logically traced before. One obstacle is that we need to know the OpenFlow port
number of the input port. One way to do that is to look for a port whose “attached-mac” is the one we expect and print
its ofport number:

$ AP_PORT=S$ (ovs-vsctl —--bare --columns=ofport find interface external-ids:attached-
—mac=\"$AP_MAC\")

S echo S$AP_PORT

3

(You could also just do a plain ovs-vsctl list interface and then look through for the right row and pick
its ofport value.)

Now we can feed this input port number into ovs—-appctl ofproto/trace along with the correct Ethernet
source and destination addresses and get a physical trace:

$ sudo ovs-appctl ofproto/trace br-int in_port=$AP_PORT,dl_src=$AP_MAC,dl_dst=$BP_MAC
Flow: in_port=3,vlan_tci=0x0000,dl_src=fa:16:3e:a9:4c:c7,dl_dst=fa:16:3e:99:7a:17,d1_
—type=0x0000

bridge ("br—-int")

0. in_port=3, priority 100
set_field:0x8->regl3
set_field:0x9->regll
set_field:0xa->regl2
set_field:0x4->metadata
set_field:0xl->regld
resubmit (, 8)

8. regld4=0xl,metadata=0x4,dl_src=fa:16:3e:a9:4c:c7, priority 50, cookie 0x6dcc4l8a
resubmit (, 9)

9. metadata=0x4, priority 0, cookie 0x8fe8689%e

(continues on next page)

104 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

32.

33.

34.

40.

41.

42.

43.

44.

45.

resubmit (, 10)
metadata=0x4,
resubmit (,11)
metadata=0x4,
resubmit (,12)
metadata=0x4,
resubmit (, 13)
metadata=0x4,
resubmit (, 14)
metadata=0x4,
resubmit (,15)
metadata=0x4,
resubmit (,16)
metadata=0x4,
resubmit (,17)
metadata=0x4,
resubmit (,18)
metadata=0x4,
resubmit (,19)
metadata=0x4,
resubmit (, 20)
metadata=0x4,
resubmit (,21)

metadata=0x4,dl_dst=fa:

priority
priority
priority
priority
priority
priority
priority
priority
priority
priority

priority

set_field:0x2->reglb

resubmit (, 32)
priority O
resubmit (, 33)

regl5=0x2, metadata=0x4,

set_field:0xb->regl3
set_field:0x9->reqgll
set_field:0xa->regl2

resubmit (, 34)
priority O

set_field:0->reg0
set_field:0->regl
set_field:0->reg2
set_field:0->reg3
set_field:0->reg4
set_field:0->reg5
set_field:0->regb
set_field:0->reg?7
set_field:0->reg8
set_field:0->reg?9

resubmit (,40)
metadata=0x4,
resubmit (,41)
metadata=0x4,
resubmit (,42)
metadata=0x4,
resubmit (,43)
metadata=0x4,
resubmit (,44)
metadata=0x4,
resubmit (,45)
metadata=0x4,
resubmit (,46)

priority
priority
priority
priority
priority

priority

cookie

cookie

cookie

cookie

cookie

cookie

cookie

cookie

cookie

cookie

cookie

:3e:99:7a:17,

0x719549d1

0x39c99%e6f

0x838152a3

0x918259e3

Oxcadl4db2

0x7834d912

0x87745210

0x34951929

0xd7a8c9fb

0xd02e9578

0x42d35507

priority 100

cookie

cookie

cookie

cookie

cookie

cookie

0xde9£3899

0x74074eff

0x7789c8bl

Oxa6b002c0

Oxaeab2b45

0x290cc4d4

priority 50,

cookie 0x57adcdef

(continues on next page)

3.4. OVN OpenStack Tutorial

105

Open vSwitch, Release 2.9.4

(continued from previous page)

46. metadata=0x4, priority 0, cookie 0xa3223b88
resubmit (,47)
47. metadata=0x4, priority 0, cookie 0x7ac2l32e
resubmit (,48)
48. regl5=0x2,metadata=0x4,dl_dst=fa:16:3e:99:7a:17, priority 50, cookie 0x8aa6426d
resubmit (, 64)
64. priority O
resubmit (, 65)
65. regl5=0x2,metadata=0x4, priority 100
output:4

Final flow: regll=0x9,regl2=0xa,regl3=0xb,regld=0x1,regl5=0x2,metadata=0x4, in_port=3,
—vlan_tci=0x0000,dl_src=fa:16:3e:a9:4c:c7,dl_dst=fa:16:3e:99:7a:17,d1l_type=0x0000
Megaflow: recirc_id=0,ct_state=—new-est-rel-rpl-inv-trk,ct_label=0/0x1,in_port=3,vlan_
—tci=0x0000/0x1000,dl_src=fa:16:3e:a9:4c:c7,dl_dst=fa:16:3e:99:7a:17,d1l_type=0x0000
Datapath actions: 4

There’s a lot there, which you can read through if you like, but the important part is:

65. regl5=0x2,metadata=0x4, priority 100
output:4

which means that the packet is ultimately being output to OpenFlow port 4. That’s port b, which you can confirm
with:

$ sudo ovs-vsctl find interface ofport=4

_uuid : 840abaca-ea8d-4cl6-allb-a94e0£f408091
admin_state :oup
bfd : {}
bfd_status : {}
cfm_fault : [

cfm_fault_status
cfm_flap_count
cfm_health
cfm_mpid
cfm_remote_mpids
cfm_remote_opstate

duplex ¢ full

error ¢ [

external_ids : {attached-mac="fa:16:3e:99:7a:17", iface-id="c29d4120-20ad4-4c44-
—bd83-8d91£5f447fd", iface-status=active, vm-1id="2db969ca-ca2a-4d9%a-b49e-£287d39c5645
—"}

ifindex : 9

ingress_policing_burst: 0
ingress_policing_rate: O

lacp_current 0]

link_resets 1

link_speed : 10000000
link_state oup

11ldp {1}

mac ¢ [

mac_in_use : "fe:16:3e:99:7a:17"
mtu : 1500

mtu_request |

name : "tapc29d4120-20"
ofport 4

(continues on next page)

106 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

ofport_request : [
options {1}
other_config {1}
statistics : {collisions=0, rx_bytes=4254, rx_crc_err=0, rx_dropped=0, rx_

—errors=0, rx_frame_err=0, rx_over_err=0, rx_packets=39, tx_bytes=4188, tx_dropped=0,
— tx_errors=0, tx_packets=39}

status : {driver_name=tun, driver_version="1.6", firmware_version=""}
type : nn

or:

$ BP_PORT=S$ (ovs-vsctl —-bare --columns=ofport find interface external-ids:attached-

—mac=\"$SBP_MAC\")
S echo $BP_PORT
4

Physical Tracing for Real Packets

In the previous sections we traced a hypothetical L2 packet, one that’s honestly not very realistic: we didn’t even
supply an Ethernet type, so it defaulted to zero, which isn’t anything one would see on a real network. We could refine
our packet so that it becomes a more realistic TCP or UDP or ICMP, etc. packet, but let’s try a different approach:
working from a real packet.

Pull up a console for VM a and start ping 10.1.1. 6, then leave it running for the rest of our experiment.

Now go back to your DevStack session and run:

$ sudo watch ovs—-dpctl dump-flows

We’re working with a new program. ovn-dpctl is an interface to Open vSwitch datapaths, in this case to the Linux
kernel datapath. Its dump—f 1ows command displays the contents of the in-kernel flow cache, and by running it under
the wat ch program we see a new snapshot of the flow table every 2 seconds.

Look through the output for a flow that begins with recirc_1id (0) and matches the Ethernet source address for a.
There is one flow per line, but the lines are very long, so it’s easier to read if you make the window very wide. This
flow’s packet counter should be increasing at a rate of 1 packet per second. It looks something like this:

recirc_id(0),in_port (3),eth(src=fa:16:3e:£5:2a:90),eth_type (0x0800),ipv4 (src=10.1.1.5,
—~frag=no), packets:388, bytes:38024, used:0.977s, actions:ct(zone=8),recirc(0x18)

We can hand the first part of this (everything up to the first space) to ofproto/trace, and it will tell us what
happens:

$ sudo ovs-appctl ofproto/trace 'recirc_id(0),in_port(3),eth(src=fa:16:3e:a9:4c:c7),
—eth_type (0x0800),ipv4 (src=10.1.1.5,dst=10.1.0.0/255.255.0.0, frag=no)'
Flow: ip,in_port=3,vlan_tci=0x0000,dl_src=fa:16:3e:a9:4c:c7,dl_dst=00:00:00:00:00:00,
—nw_src=10.1.1.5,nw_dst=10.1.0.0,nw_proto=0,nw_tos=0,nw_ecn=0,nw_tt1=0

bridge ("br-int")

0. in_port=3, priority 100
set_field:0x8->regl3
set_field:0x9->regll
set_field:0xa->regl2
set_field:0x4->metadata

(continues on next page)

3.4. OVN OpenStack Tutorial 107

Open vSwitch, Release 2.9.4

(continued from previous page)

set_field:0xl->regl4
resubmit (, 8)
8. regld4=0x1l,metadata=0x4,dl_src=fa:16:3e:a9:4c:c7, priority 50, cookie 0Ox6dcc4l8a
resubmit (, 9)
9. ip,regld=0x1l,metadata=0x4,dl_src=fa:16:3e:a9:4c:c7,nw_src=10.1.1.5, priority 90,
—cookie 0x343af48c
resubmit (, 10)
10. metadata=0x4, priority 0, cookie 0x719549d1
resubmit (,11)
11. ip,metadata=0x4, priority 100, cookie 0x46c089e6
load:0x1->NXM NX_XXREGO[96]
resubmit (,12)
12. metadata=0x4, priority 0, cookie 0x838152a3
resubmit (, 13)
13. ip,reg0=0x1/0x1l,metadata=0x4, priority 100, cookie 0xd1941634
ct (table=22, zone=NXM_NX_REG13[0..157])
drop

Final flow: ip,reg0=0x1l,regll=0x9,regl2=0xa, regl3=0x8,regld=0x1,metadata=0x4,in_
—port=3,vlan_tci=0x0000,dl_src=fa:16:3e:a9:4c:c7,dl_dst=00:00:00:00:00:00,nw_src=10.
—1.1.5,nw_dst=10.1.0.0,nw_proto=0,nw_tos=0,nw_ecn=0,nw_tt1=0

Megaflow: recirc_id=0, ip, in_port=3,vlan_tci=0x0000/0x1000,dl_src=fa:16:3e:a9:4c:c7,nw_
—src=10.1.1.5,nw_dst=10.1.0.0/16,nw_frag=no

Datapath actions: ct(zone=8),recirc (0xb)

Note: Be careful cutting and pasting ovs—dpctl dump-flows outputinto ofproto/trace because the latter
has terrible error reporting. If you add an extra line break, etc., it will likely give you a useless error message.

There’s no output action in the output, but there are ct and recirc actions (which you can see in the Datapath
actions at the end). The ct action tells the kernel to pass the packet through the kernel connection tracking for fire-
walling purposes and the recirc says to go back to the flow cache for another pass based on the firewall results. The
Oxb value inside the recirc gives us a hint to look at the kernel flows for a cached flow with recirc_id (0xb).
Indeed, there is one:

recirc_id(0Oxb), in_port (3),ct_state (-newtest-rel-rpl-inv+trk),ct_label (0/0x1),
—eth(src=fa:16:3e:a9:4c:c7,dst=fa:16:3e:99:7a:17),eth_type (0x0800),ipvd (dst=10.1.1.4/
—255.255.255.252, frag=no), packets:171, bytes:16758, used:0.271s,

—actions:ct (zone=11), recirc (0xc)

We can then repeat our command with the match part of this kernel flow:

$ sudo ovs-appctl ofproto/trace 'recirc_id(0xb),in_port (3),ct_state (-newtest-rel-rpl-
—inv+trk),ct_label (0/0x1),eth(src=fa:16:3e:a9:4c:c7,dst=fa:16:3e:99:7a:17),eth_
—type (0x0800) ,ipv4 (dst=10.1.1.4/255.255.255.252, frag=no) '

Datapath actions: ct(zone=11l),recirc(0xc)

In other words, the flow passes through the connection tracker a second time. The first time was for a’s outgoing
firewall; this second time is for b’s incoming firewall. Again, we continue tracing with recirc_id (0xc):

$ sudo ovs-appctl ofproto/trace 'recirc_id(0xc),in_port (3),ct_state(-newtest-rel-rpl-
—inv+trk),ct_label (0/0x1),eth(src=fa:16:3e:a9:4c:c7,dst=fa:16:3e:99:7a:17),eth_
—type (0x0800) ,ipv4 (dst=10.1.1.6,proto=1, frag=no) '

Datapath actions: 4

108 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

It was took multiple hops, but we finally came to the end of the line where the packet was output to b after passing
through both firewalls. The port number here is a datapath port number, which is usually different from an OpenFlow
port number. To check that it is b’s port, we first list the datapath ports to get the name corresponding to the port
number:

$ sudo ovs-dpctl show

system@ovs—-system:
lookups: hit:1994 missed:56 lost:0
flows: 6
masks: hit:2340 total:4 hit/pkt:1.14

port 0: ovs—-system (internal)
port 1: br-int (internal)
port 2: br-ex (internal)

port 3: tap820c0888-13

port 4: tapc29d4120-20

and then confirm that this is the port we think it is with a command like this:

$ ovs-vsctl —--columns=external-ids list interface tapc29d4120-20

external_ids : {attached-mac="fa:16:3e:99:7a:17", iface-id="c29d4120-20ad4-4c44-

—bd83-8d91f5f447fd", iface-status=active, vm-id="2db969ca-cal2a-4d%a-b49e-f287d39c5645
AL

oy

Finally, we can relate the OpenFlow flows from our traces back to OVN logical flows. For individual flows, cut and
paste a “cookie” value from ofproto/trace outputinto ovn-sbctl 1flow-list,e.g.:

$ ovn-sbctl 1lflow-list 0x6dcc4l8a|abbrev
Datapath: "neutron-5bé6baf" aka "nl" (a8a758) Pipeline: ingress

table=0 (ls_in_port_sec_12), priority=50 , match=(inport == "820c08" && eth.src_
—== {fa:16:3e:a9:4c:c7}), action=(next;)

Or, you can pipe ofproto/trace output through ovn—-detrace to annotate every flow:

$ sudo ovs-appctl ofproto/trace 'recirc_id(0xc),in_port (3),ct_state(-newtest-rel-rpl-
—inv+trk),ct_label (0/0x1),eth(src=fa:16:3e:a9:4c:c7,dst=fa:16:3e:99:7a:17),eth_
—type (0x0800),ipv4 (dst=10.1.1.6,proto=1, frag=no)' | ovn-detrace

3.4.6 Routing

Previously we set up a pair of VMs a and b on a network n1 and demonstrated how packets make their way between
them. In this step, we’ll set up a second network n2 with a new VM ¢, connect a router r to both networks, and
demonstrate how routing works in OVN.

There’s nothing really new for the network and the VM so let’s just go ahead and create them:

$ openstack network create —--project admin --provider-network-type geneve n2

$ openstack subnet create —--subnet-range 10.1.2.0/24 --network n2 n2subnet

$ openstack server create —--nic net-id=n2,v4-fixed-ip=10.1.2.7 —--flavor ml.nano —-
—image $IMAGE_ID --key-name demo c

$ openstack port set --name cp $ (openstack port list —--server c —-f value -c ID)

$ CP_MAC=$ (openstack port show —-f value -c mac_address cp)

The new network n2 is not yet connected to n1 in any way. You can try tracing a broadcast packet from a to see, for
example, that it doesn’t make it to c:

3.4. OVN OpenStack Tutorial 109

Open vSwitch, Release 2.9.4

$ ovn-trace nl 'inport == "ap" && eth.src == '$AP_MAC' && eth.dst == 'S$SCP_MAC

Now create an OpenStack router and connect it to n1 and n2:

$ openstack router create r
$ openstack router add subnet r nlsubnet
$ openstack router add subnet r n2subnet

Now a, b, and c¢ should all be able to reach other. You can get some verification that routing is taking place by running
you ping between c and one of the other VMs: the reported TTL should be one less than between a and b (63 instead
of 64).

Observe via ovn—nbct 1 the new OVN logical switch and router and then ports that connect them together:

$ ovn-nbctl show]|abbrev

switch £51234 (neutron-332346) (aka n2)
port 82b983
type: router
router-port: lrp-82b983
port 2e585f (aka cp)
addresses: ["fa:16:3e:89:f2:36 10.1.2.7"]
switch 3eb263 (neutron-5bébaf) (aka nl)
port c29d41 (aka bp)
addresses: ["fa:16:3e:99:7a:17 10.1.1.6"]
port 820c08 (aka ap)
addresses: ["fa:16:3e:a9:4c:c7 10.1.1.5"]
port 17d870
type: router
router—-port: lrp-17d870

router ddeO6c (neutron-f88ebc) (aka r)
port lrp-82b983
mac: "fa:16:3e:19:9f:46"
networks: ["10.1.2.1/24"]
port lrp-17d870
mac: "fa:16:3e:f6:e2:8f"
networks: ["10.1.1.1/24"]

We have not yet looked at the logical flows for an OVN logical router. You might find it of interest to look at them on
your own:

$ ovn-sbctl 1lflow-list r | abbrev | less -S

Let’s grab the n1subnet router porter MAC address to simplify later commands:

$ N1SUBNET_MAC=$ (ovn—-nbctl —--bare —--columns=mac find logical_router_port networks=10.
—1.1.1/24)

Let’s see what happens at the logical flow level for an ICMP packet from a to c. This generates a long trace but an
interesting one, so we’ll look at it bit by bit. The first three stanzas in the output show the packet’s ingress into n1 and
processing through the firewall on that side (via the “ct_next” connection-tracking action), and then the selection of
the port that leads to router r as the output port:

110 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

$ ovn-trace nl 'inport == "ap" && eth.src == '$AP_MAC' && eth.dst == 'SN1ISUBNET_MAC' &
—& ip4d.src == 10.1.1.5 && ipd.dst == 10.1.2.7 && ip.ttl == 64 && icmpéd.type == 8'

ingress (dp="nl", inport="ap")

0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "ap" && eth.src ==
—~{fa:16:3e:a9:4c:c7}, priority 50, uuid 6dcc4l8a
next;
1. 1s_in_port_sec_ip (ovn-northd.c:2364): inport == "ap" && eth.src ==_
—~fa:16:3e:a9:4c:c7 && ip4d.src == {10.1.1.5}, priority 90, uuid 343afd48c
next;
3. 1ls_in_pre_acl (ovn-northd.c:2646): ip, priority 100, uuid 46c089e6
reg0[0] = 1;
next;
5. 1ls_in_pre_stateful (ovn-northd.c:2764): reg0[0] == 1, priority 100, uuid d1941634
ct_next;
ct_next (ct_state=est |trk /+ default (use —--ct to customize) =*/)
6. ls_in_acl (ovn-northd.c:2925): !ct.new && ct.est && !ct.rpl && ct_label.blocked
—== 0 && (inport == "ap" && ip4), priority 2002, uuid al2b39f0
next;
13. 1s_in_12_1kup (ovn-northd.c:3529): eth.dst == fa:16:3e:f6:e2:8f, priority 50,
—uuid c43ead3l
outport = "17d870";
output;

egress (dp="nl", inport="ap", outport="17d870")

1. 1ls_out_pre_acl (ovn-northd.c:2626): ip && outport == "17d870", priority 110, uuid,
—60395450

next;
8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "17d870", priority 50, uuid
—91b5cab0

output;

/+ output to "17d870", type "patch" =/

The next two stanzas represent processing through logical router r. The processing in table 5 is the core of the routing
implementation: it recognizes that the packet is destined for an attached subnet, decrements the TTL and updates the
Ethernet source address. Table 6 then selects the Ethernet destination address based on the IP destination. The packet
then passes to switch n2 via an OVN “logical patch port”:

ingress (dp="r", inport="lrp-17d870")

0. lr_in_admission (ovn-northd.c:4071): eth.dst == fa:16:3e:f6:e2:8f && inport ==
—"lrp-17d870", priority 50, uuid £a5270b0

next;
5. lr_in_ip_routing (ovn-northd.c:3782): ipd.dst == 10.1.2.0/24, priority 49, uuid,,
—5£9d469f

ip.ttl——;

reg0 = ip4.dst;
regl = 10.1.2.1;
eth.src = fa:16:3e:19:9f:46;

outport = "lrp-82b983";
flags.loopback = 1;
next;

6. lr_in_arp_resolve
7 100 13
00—

13
(===

ovn—-northd.c:5088) : outport == "lrp-82b983" && reg0 == 10.1.2.

riorit 0350643

TP Y (continues on next page)

3.4. OVN OpenStack Tutorial 111

Open vSwitch, Release 2.9.4

(continued from previous page)

eth.dst = fa:16:3e:89:f2:36;

next;

8. lr_in_arp_request (ovn-northd.c:5260): 1, priority 0, uuid 6dacdd82

output;

egress (dp="r", inport="lrp-17d870", outport="1lrp-82b983")

3. 1lr_out_delivery (ovn-northd.c:5288): outport == "lrp-82b983", priority 100, uuid
—00beadf2
output;

/* output to "lrp-82b983", type "patch" «/

Finally the logical switch for n2 runs through the same logic as n1 and the packet is delivered to VM c:

ingress (dp="n2", inport="82b983")

0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "82b983", priority 50, uuid,
—9a789e06

next;
3. 1ls_in_pre_acl (ovn-northd.c:2624): ip && inport == "82b983", priority 110, uuid
—ab52f2la

next;
13. 1s_in_12_1lkup (ovn-northd.c:3529): eth.dst == fa:16:3e:89:£2:36, priority 50,

—uuid dcafb3e9
outport = "cp";
output;

egress (dp="n2", inport="82b983", outport="cp")

1. 1ls_out_pre_acl (ovn-northd.c:2648): ip, priority 100, uuid cd9cfa74

reg0[0] = 1;
next;
2. ls_out_pre_stateful (ovn-northd.c:2766): reg0[0] == 1, priority 100, uuid 9e8e22c5
ct_next;
ct_next (ct_state=est|trk /* default (use —--ct to customize) =*/)
4. ls_out_acl (ovn—-northd.c:2925): !ct.new && ct.est && !ct.rpl && ct_label.blocked,
—== 0 && (outport == "cp" && ipd4 && ipd.src == Sas_ip4_0fclbocf_f925_49e6_8f00_
—6dd1l3becaddc), priority 2002, uuid a746fald
next;
7. ls_out_port_sec_ip (ovn-northd.c:2364): outport == "cp" && eth.dst ==
—~fa:16:3e:89:f2:36 && ipd.dst == {255.255.255.255, 224.0.0.0/4, 10.1.2.7}, priority,,
—90, uuid 4d9862b5
next;

8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "cp" && eth.dst ==

—~{fa:16:3e:89:£f2:36}, priority 50, uuid 0242cdc3
output;
/% output to "cp", type "" x/

Physical Tracing

It’s possible to use ofproto/trace, just as before, to trace a packet through OpenFlow tables, either for a hypo-
thetical packet or one that you get from a real test case using ovs—dpct 1. The process is just the same as before and
the output is almost the same, too. Using a router doesn’t actually introduce any interesting new wrinkles, so we’ll
skip over this for this case and for the remainder of the tutorial, but you can follow the steps on your own if you like.

112 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

3.4.7 Adding a Gateway

The VMs that we’ve created can access each other but they are isolated from the physical world. In OpenStack, the
dominant way to connect a VM to external networks is by creating what is called a “floating IP address”, which uses
network address translation to connect an external address to an internal one.

DevStack created a pair of networks named “private” and “public”. To use a floating IP address from a VM, we
first add a port to the VM with an IP address from the “private” network, then we create a floating IP address on the
“public” network, then we associate the port with the floating IP address.

Let’s add a new VM d with a floating IP:

$ openstack server create --nic net-id=private --flavor ml.nano --image $IMAGE_ID --
—key—name demo d

$ openstack port set —--name dp $ (openstack port list —--server d -f value -c ID)

$ DP_MAC=S$ (openstack port show -f value -c mac_address dp)

$ openstack floating ip create —--floating-ip-address 172.24.4.8 public

$ openstack server add floating ip d 172.24.4.8

(We specified a particular floating IP address to make the examples easier to follow, but without that OpenStack will
automatically allocate one.)

It’s also necessary to configure the “public” network because DevStack does not do it automatically:

$ sudo ip link set br-ex up
$ sudo ip route add 172.24.4.0/24 dev br-ex
$ sudo ip addr add 172.24.4.1/24 dev br-ex

Now you should be able to “ping” VM d from the OpenStack host:

$ ping 172.24.4.8

PING 172.24.4.8 (172.24.4.8) 56(84) bytes of data.

64 bytes from 172.24.4.8: icmp_seg=1 ttl=63 time=56.0 ms

64 bytes from 172.24.4 icmp_seg=2 tt1l=63 time=1.44 ms

64 bytes from 172.24.4. icmp_seg=3 ttl=63 time=1.04 ms

64 bytes from 172.24.4 icmp_seg=4 ttl=63 time=0.403 ms

~C

-—— 172.24.4.8 ping statistics —-—-—

4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.403/14.731/56.028/23.845 ms

O 00 O 0o

You can also SSH in with the key that we created during setup:

S ssh —-i ~/id_rsa_demo cirros@Rl172.24.4.8

Let’s dive in and see how this gets implemented in OVN. First, the relevant parts of the NB DB for the “public” and
“private” networks and the router between them:

$ ovn-nbctl show | abbrev
switch 2579f4 (neutron-dlac28) (aka public)
port provnet-dlac28
type: localnet
addresses: ["unknown"]
port ae9%b52
type: router
router-port: lrp-ae9b52
switch 5b3d5f (neutron-c02c4d) (aka private)
port b256dd

(continues on next page)

3.4. OVN OpenStack Tutorial 113

Open vSwitch, Release 2.9.4

(continued from previous page)

type: router
router-port: lrp-b256dd
port f264e7
type: router
router-port: lrp-f264e7
port caez25b (aka dp)
addresses: ["fa:16:3e:cl:f5:a2 10.0.0.6 f£db0:5860:4ba8:0:£f816:3eff:fecl:f5a2"]

router c¢59ad2 (neutron-9b057f) (aka routerl)

port lrp-ae9b52

mac: "fa:16:3e:b2:d2:67"

networks: ["172.24.4.9/24", "2001:db8::b/64"]
port lrp-b256dd

mac: "fa:16:3e:35:33:db"

networks: ["fdb0:5860:4ba8::1/64"]
port lrp-f264e7

mac: "fa:16:3e:fc:c8:da"

networks: ["10.0.0.1/26"]
nat 788c6d

external ip: "172.24.4.8"

logical ip: "10.0.0.6"

type: "dnat_and_snat"
nat 80914c

external ip: "172.24.4.9"

logical ip: "10.0.0.0/26"

type: "snat"

What we see is:

* VM d is on the “private” switch under its private IP address 10.0.0.8. The “private” switch is connected to
“router1” via two router ports (one for IPv4, one for IPv6).

* The “public” switch is connected to “router]l” and to the physical network via a “localnet” port.

* “routerl” is in the middle between “private” and “public”. In addition to the router ports that connect to these
switches, it has “nat” entries that direct network address translation. The translation between floating IP address
172.24.4.8 and private address 10.0.0.8 makes perfect sense.

When the NB DB gets translated into logical flows at the southbound layer, the “nat” entries get translated into IP
matches that then invoke “ct_snat” and “ct_dnat” actions. The details are intricate, but you can get some of the idea
by just looking for relevant flows:

$ ovn-sbctl 1flow-list routerl | abbrev | grep nat | grep -E '172.24.4.8]10.0.0.8"

table=3 (lr_in_unsnat), priority=100 , match=(ip && ip4d.dst == 172.24.4.8 &&
— 1lnport == "lrp-ae9%b52" && is_chassis_resident ("cr-lrp-ae9b52")), action=(ct_snat;)

table=3 (lr_in_unsnat), priority=50 , match=(ip && ipd.dst == 172.24.4.8),
—action=(reg9[0] = 1; next;)

table=4 (lr_in_dnat), priority=100 , match=(ip && ip4d.dst == 172.24.4.8 &&
— 1nport == "lrp-ae9b52" && is_chassis_resident ("cr-lrp-ae9b52")), action=(ct_
—dnat (10.0.0.6) ;)

table=4 (lr_in_dnat), priority=50 , match=(ip && ipd.dst == 172.24.4.8),
—action=(reg9[0] = 1; next;)

table=1 (lr_out_snat), priority=33 , match=(ip && ip4.src == 10.0.0.6 &&_
—outport == "lrp-ae9b52" && is_chassis_resident ("cr-lrp-ae9bb52")), action=(ct_

—snat (172.24.4.8) ;)

Let’s take a look at how a packet passes through this whole gauntlet. The first two stanzas just show the packet

114 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

traveling through the “public” network and being forwarded to the “router1” network:

$ ovn-trace public 'inport == "provnet-dlac2896-18a7-4bca-8f46-b21e2370e5bl" && eth.
—src == 00:01:02:03:04:05 && eth.dst == fa:16:3e:b2:d2:67 && ipd.src == 172.24.4.1 &&
— ipd.dst == 172.24.4.8 && ip.ttl == 64 && icmpéd.type==8"'

ingress (dp="public", inport="provnet-dlac28")

0. 1ls_in_port_sec_12 (ovn-northd.c:3234): inport == "provnet-dlac28", priority 50,
—uuid 8d86fb06

next;
10. ls_in_arp_rsp (ovn-northd.c:3266): inport == "provnet-dlac28", priority 100, uuid,
—21313eff

next;
13. 1s_in_12_1lkup (ovn-northd.c:3571): eth.dst == fa:16:3e:b2:d2:67 && is_chassis_
—resident ("cr-lrp-ae9b52"), priority 50, uuid 7£28f51f

outport = "ae9%p52";

output;

egress (dp="public", inport="provnet-dlac28", outport="ae9%b52")

8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "ae9%b52", priority 50, uuid
—72fea396
output;

/* output to "ae9%b52", type "patch" x/

In “routerl”, first the ct_snat action without an argument attempts to “un-SNAT” the packet. ovn-trace treats this
as a no-op, because it doesn’t have any state for tracking connections. As an alternative, it invokes ct _dnat (10.0.
0.8) to NAT the destination IP:

ingress (dp="routerl", inport="lrp-ae9b52")

0. lr_in_admission (ovn-northd.c:4071): eth.dst == fa:16:3e:b2:d2:67 && inport ==

—"lrp-ae9b52" && is_chassis_resident ("cr-lrp-ae9b52"), priority 50, uuid 8c6945c2
next;

3. 1lr_in_unsnat (ovn-northd.c:4591): ip && ipd.dst == 172.24.4.8 && inport == "lrp-

—ae9bb2" && is_chassis_resident ("cr-lrp-ae9b52"), priority 100, uuid e922f£541
ct_snat;

ct_snat /* assuming no un-snat entry, so no change »*/
4. lr_in_dnat (ovn-northd.c:4649): ip && ipéd.dst == 172.24.4.8 && inport == "lrp-
—ae9bb2" && is_chassis_resident ("cr-lrp-ae9b52"), priority 100, uuid 02£41b79
ct_dnat (10.0.0.6);

Still in “router1”, the routing and output steps transmit the packet to the “private” network:

ct_dnat (ip4.dst=10.0.0.6)

5. 1lr_in_ip_routing (ovn-northd.c:3782): ipd.dst == 10.0.0.0/26, priority 53, uuid,
—86e005b0
ip.ttl——;

reg0 = ip4.dst;
regl = 10.0.0.1;
eth.src = fa:16:3e:fc:c8:da;

outport = "lrp-£f264e7";
flags.loopback = 1;
next;

(continues on next page)

3.4. OVN OpenStack Tutorial 115

Open vSwitch, Release 2.9.4

(continued from previous page)

6. lr_in_arp_resolve (ovn-northd.c:5088): outport == "lrp-£f264e7" && reg0 == 10.0.0.
—6, priority 100, uuid 2963d67c

eth.dst = fa:16:3e:cl:f5:a2;

next;
8. lr_in_arp_request (ovn-northd.c:5260): 1, priority 0, uuid eeadl9b7

output;

egress (dp="routerl", inport="lrp-ae9b52", outport="lrp-£264e7")

3. 1lr_out_delivery (ovn-northd.c:5288): outport == "lrp-£f264e7", priority 100, uuid_
—42dadc23
output;

/* output to "lrp-f264e7", type "patch" «/

In the “private” network, the packet passes through VM d’s firewall and is output to d:

ingress (dp="private", inport="£f264e7")

0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "f264e7", priority 50, uuid,
—5b721214

next;
3. 1ls_in_pre_acl (ovn-northd.c:2624): ip && inport == "f264e7", priority 110, uuid,
—5bdc3209

next;
13. 1s_in_12_1l1kup (ovn-northd.c:3529): eth.dst == fa:16:3e:cl:£f5:a2, priority 50,
—uuid 7957f80f

outport = "dp";

output;

egress (dp="private", inport="£f264e7", outport="dp")

1. 1ls_out_pre_acl (ovn-northd.c:2648): ip, priority 100, uuid 4981c79d

reg0[0] = 1;
next;
2. ls_out_pre_stateful (ovn-northd.c:2766): reg0[0] == 1, priority 100, uuid 247e02eb
ct_next;
ct_next (ct_state=est|trk /* default (use —--ct to customize) =*/)
4. ls_out_acl (ovn—northd.c:2925): !ct.new && ct.est && !ct.rpl && ct_label.blocked,
—== 0 && (outport == "dp" && ip4 && ip4d.src == 0.0.0.0/0 && icmp4), priority 2002,
—uuid b860fcof
next;
7. ls_out_port_sec_ip (ovn-northd.c:2364): outport == "dp" && eth.dst ==
—~fa:16:3e:cl:f5:a2 && ipd.dst == {255.255.255.255, 224.0.0.0/4, 10.0.0.6}, priority,,
90, uuid 15655a98
next;
8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "dp" && eth.dst ==
—~{fa:16:3e:cl:f5:a2}, priority 50, uuid 5916£f94b
output;
/* output to "dp", type "" x/
3.4.8 IPv6

OVN supports IPv6 logical routing. Let’s try it out.

116 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

The first step is to add an IPv6 subnet to networks n1 and n2, then attach those subnets to our router r. As usual,
though OpenStack can assign addresses itself, we use fixed ones to make the discussion easier:

$ openstack subnet create -—-ip-version 6 —--subnet-range fcll::/64 —--network nl

—nlsubnet6

$ openstack subnet create --ip-version 6 --subnet-range fc22::/64 --network n2

—n2subnetb
$ openstack router add subnet r nlsubnet6
$ openstack router add subnet r n2subnet6

Then we add an IPv6 address to each of our VMs:

w4y O

A_PORT_ID=$ (openstack port list --server a -f value -c ID)
openstack port set --fixed-ip subnet=nlsubnet6,ip-address=fcll::5 $A_PORT_ID
B_PORT_ID=$ (openstack port list —--server b —-f value -c ID)
openstack port set --fixed-ip subnet=nlsubnet6, ip-address=fcll::6 $B_PORT_ID
C_PORT_ID=$ (openstack port list —--server c —-f value -c ID)
openstack port set --fixed-ip subnet=n2subnet6, ip—address=fc22::7 $C_PORT_ID

At least for me, the new IPv6 addresses didn’t automatically get propagated into the VMs. To do it by hand, pull up

the console for a and run:

$ sudo ip addr add fcll::5/64 dev ethO
$ sudo ip route add via fcll::1

Then in b:

$ sudo ip addr add fcll::6/64 dev ethO
$ sudo ip route add via fcll::1

Finally in c:

$ sudo ip addr add fc22::7/64 dev eth0
$ sudo ip route add via fc22::1

Now you should have working IPv6 routing through router r. The relevant parts of the NB DB look like the following.
The interesting parts are the new fc11:: and £c22: : addresses on the ports in n1 and n2 and the new IPv6 router

ports in r:

S ovn-nbctl show | abbrev

switch £51234 (neutron-332346) (aka n2)
port 1a8l162
type: router
router-port: lrp-1a8162
port 82b983
type: router
router—-port: lrp-82b983
port 2e585f (aka cp)

addresses: ["fa:16:3e:89:f2:36 10.1.2.7 fc22:

switch 3eb263 (neutron-5bébaf) (aka nl)
port ad952e
type: router
router-port: lrp-ad952e
port c29d41 (aka bp)

addresses: ["fa:16:3e:99:7a:17 10.1.1.6 fcll:

port 820c08 (aka ap)

AN

:6"]

(continues on next page)

3.4. OVN OpenStack Tutorial

117

Open vSwitch, Release 2.9.4

(continued from previous page)

addresses: ["fa:16:3e:a9:4c:c7 10.1.1.5 fcll::5"]
port 17d870

type: router

router-port: lrp-17d870

router ddeO6c (neutron-f88ebc) (aka r)
port lrp-la8l162
mac: "fa:16:3e:06:de:ad"
networks: ["fc22::1/64"]
port lrp-82b983
mac: "fa:16:3e:19:9f:46"
networks: ["10.1.2.1/24"]
port lrp-ad952e
mac: "fa:16:3e:ef:2f:8b"
networks: ["fcll::1/64"]
port lrp-17d870
mac: "fa:16:3e:f6:e2:8f"
networks: ["10.1.1.1/24"]

Try tracing a packet from a to c. The results correspond closely to those for IPv4 which we already discussed back
under Routing:

$ N1SUBNET6_MAC=$ (ovn-nbctl —--bare —--columns=mac find logical_router_port networks=\
"fcll::1/64\")

$ ovn-trace nl 'inport == "ap" && eth.src == 'S$AP_MAC' && eth.dst == '$SNISUBNET6_MAC' |
—~&& ip6.src == fcll::5 && ip6.dst == fc22::7 && ip.ttl == 64 && icmpb6.type == 8'

ingress (dp="nl", inport="ap")

0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "ap" && eth.src ==
—~{fa:16:3e:a9:4c:c7}, priority 50, uuid 6dcc4l8a
next;
1. 1ls_in_port_sec_ip (ovn-northd.c:2390): inport == "ap" && eth.src ==_
—~fa:l16:3e:a9:4c:c7 && ip6.src == {fe80::£f816:3eff:fea%:4cc7, fcll::5}, priority 90,
—uuid 604810ea
next;
3. 1ls_in_pre_acl (ovn-northd.c:2646): ip, priority 100, uuid 46c089%e6
reg0([0] = 1;
next;
5. 1ls_in_pre_stateful (ovn-northd.c:2764): reg0[0] == 1, priority 100, uuid d1941634
ct_next;
ct_next (ct_state=est |trk /+ default (use —--ct to customize) =*/)
6. 1ls_in_acl (ovn-northd.c:2925): !ct.new && ct.est && !ct.rpl && ct_label.blocked
—== 0 && (inport == "ap" && ip6), priority 2002, uuid 7fdd607e
next;
13. 1s_in_12_1kup (ovn-northd.c:3529): eth.dst == fa:16:3e:ef:2f:8b, priority 50,
—uuid eld87fch
outport = "ad952e";
output;

egress (dp="nl", inport="ap", outport="ad952e")
1. 1ls_out_pre_acl (ovn-northd.c:2626): ip && outport == "ad952e", priority 110, uuid,
—88f68988

(continues on next page)

118 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

next;
8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "ad952e", priority 50, uuid,,
—5935755e

output;

/* output to "ad952e", type "patch" */

ingress (dp="r", inport="lrp-ad952e")

0. lr_in_admission (ovn-northd.c:4071): eth.dst == fa:16:3e:ef:2f:8b && inport ==
—"lrp-ad952e", priority 50, uuid ddfeb712

next;
5. lr_in_ip_routing (ovn-northd.c:3782): ip6.dst == fc22::/64, priority 129, uuid_
—cc2130ec

ip.ttl-——;

xxreg0 = ip6.dst;
xxregl = fc22::1;
eth.src = fa:16:3e:06:de:ad;
outport = "lrp-la8l62";
flags.loopback = 1;
next;
6. lr_in_arp_resolve (ovn-northd.c:5122): outport == "lrp-1la8l62" && xxreg(==
—fc22::7, priority 100, uuid bcf75288
eth.dst = fa:16:3e:89:f2:36;
next;
8. lr_in_arp_request (ovn-northd.c:5260): 1, priority 0, uuid 6dacdd82
output;

egress (dp="r", inport="lrp-ad952e", outport="lrp-1a8162")

3. 1lr_out_delivery (ovn-northd.c:5288): outport == "lrp-1a8162", priority 100, uuid
—5260dfc5
output;

/+ output to "lrp-1la8l162", type "patch" =/

ingress (dp="n2", inport="1a8162")

0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "1la8162", priority 50, uuid,
—10957d1b

next;
3. 1ls_in_pre_acl (ovn-northd.c:2624): ip && inport == "1a8162", priority 110, uuid,
—~a27ebd00

next;
13. 1s_in_12_1kup (ovn-northd.c:3529): eth.dst == fa:16:3e:89:f2:36, priority 50,
—uuid dcafb3e9

outport = "cp"

output;

egress (dp="n2", inport="1a8162", outport="cp")
1. 1ls_out_pre_acl (ovn-northd.c:2648): ip, priority 100, uuid cd9cfa74
reg0[0] = 1;

next;

2. ls_out_pre_stateful (ovn-northd.c:2766): reg0[0] == 1, priority 100, uuid 9e8e22c5
ct_next;

ct_next (ct_state=est |trk /+ default (use —--ct to customize) =*/)

(continues on next page)

3.4. OVN OpenStack Tutorial 119

Open vSwitch, Release 2.9.4

(continued from previous page)

4. 1ls_out_acl (ovn-northd.c:2925): !ct.new && ct.est && !ct.rpl && ct_label.blocked
—== 0 && (outport == "cp" && ip6 && ip6.src == Sas_ip6_0fclbocf_f925_49e6_8f00_
—6ddl3beca9dc), priority 2002, uuid 12fc96£f9
next;
7. ls_out_port_sec_ip (ovn-northd.c:2390): outport == "cp" && eth.dst ==
—~fa:16:3e:89:f2:36 && ip6.dst == {fe80::£f816:3eff:fe89:£f236, ££f00::/8, fc22::7},
—priority 90, uuid c622596a
next;
8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "cp" && eth.dst ==
—~{fa:16:3e:89:£f2:36}, priority 50, uuid 0242cdc3
output;
/* output to "cp", type "" */
3.49 ACLs

Let’s explore how ACLs work in OpenStack and OVN. In OpenStack, ACL rules are part of “security groups”, which
are “default deny”, that is, packets are not allowed by default and the rules added to security groups serve to allow
different classes of packets. The default group (named “default”) that is assigned to each of our VMs so far allows all
traffic from our other VMs, which isn’t very interesting for testing. So, let’s create a new security group, which we’ll
name “custom”, add rules to it that allow incoming SSH and ICMP traffic, and apply this security group to VM c:

openstack security group create custom

openstack security group rule create --dst-port 22 custom
openstack security group rule create —--protocol icmp custom
openstack server remove security group c default

openstack server add security group c custom

v v W

Now we can do some experiments to test security groups. From the console on a or b, it should now be possible to
“ping” c or to SSH to it, but attempts to initiate connections on other ports should be blocked. (You can try to connect
on another port with ssh —p PORT IPornc PORT IP.)Connection attempts should time out rather than receive
the “connection refused” or “connection reset” error that you would see between a and b.

It’s also possible to test ACLs via ovn-trace, with one new wrinkle. ovn-trace can’t simulate connection tracking state
in the network, so by default it assumes that every packet represents an established connection. That’s good enough
for what we’ve been doing so far, but for checking properties of security groups we want to look at more detail.

If you look back at the VM-to-VM traces we’ve done until now, you can see that they execute two ct_next actions:

» The first of these is for the packet passing outward through the source VM’s firewall. We can tell ovn-trace to
treat the packet as starting a new connection or adding to an established connection by adding a ——ct option:
—-—ct newor ——-ct est, respectively. The latter is the default and therefore what we’ve been using so far.
We can also use ——ct est, rpl, which in addition to ——ct est means that the connection was initiated by
the destination VM rather than by the VM sending this packet.

* The second is for the packet passing inward through the destination VM’s firewall. For this one, it makes sense
to tell ovn-trace that the packet is starting a new connection, with ——ct new, or that it is a packet sent in reply
to a connection established by the destination VM, with ——ct est, rpl.

ovn-trace uses the ——ct options in order, so if we want to override the second ct_next behavior we have to specify
two options.

Another useful ovn-trace option for this testing is ——minimal, which reduces the amount of output. In this case
we’re really just interested in finding out whether the packet reaches the destination VM, that is, whether there’s an
eventual output action to ¢, so ——minimal works fine and the output is easier to read.

Try a few traces. For example:

120 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

¢ VM a initiates a new SSH connection to c:

$ ovn-trace --ct new --ct new —--minimal nl 'inport == "ap" && eth.src == '$AP_MAC
—' && eth.dst == '$NISUBNET6_MAC' && ip4.src == 10.1.1.5 && ip4.dst == 10.1.2.7 &
—& ip.ttl == 64 && tcp.dst == 22'

ct_next (ct_state=new|trk) {
ip.ttl-——;
eth.src = fa:16:3e:19:9f:46;
eth.dst fa:16:3e:89:f2:36;
ct_next (ct_state=new|trk) {
output ("cp") ;

}i

}i

This succeeds, as you can see since there is an output action.

¢ VM a initiates a new Telnet connection to c:

$ ovn-trace --ct new --ct new —--minimal nl 'inport == "ap" && eth.src == '$AP_MAC
—' && eth.dst == '$NISUBNET6_MAC' && ip4.src == 10.1.1.5 && ipd.dst == 10.1.2.7 &
—& ip.ttl == 64 && tcp.dst == 23'
ct_next (ct_state=new|trk) {

ip.ttl-—;

eth.src = fa:16:3e:19:9f:406;

eth.dst = fa:16:3e:89:£f2:36;

ct_next (ct_state=new|trk);
}i

This fails, as you can see from the lack of an output action.

* VM a replies to a packet that is part of a Telnet connection originally initiated by c:

$ ovn-trace —--ct est,rpl --ct est,rpl --minimal nl 'inport == "ap" && eth.src == '
—S$AP_MAC' && eth.dst == '$NISUBNET6_MAC' && ipd.src == 10.1.1.5 && ipd.dst == 10.
—1.2.7 && ip.ttl == 64 && tcp.dst == 23!

ct_next (ct_state=est|rpl|trk) {
ip.ttl-—;
eth.src = fa:16:3e:19:9f:46;
eth.dst fa:16:3e:89:f2:36;
ct_next (ct_state=est|rpl|trk) {
output ("cp") ;

}i
}i

This succeeds, as you can see from the output action, since traffic received in reply to an outgoing connection
is always allowed.

3.4.10 DHCP
As a final demonstration of the OVN architecture, let’s examine the DHCP implementation. Like switching, routing,
and NAT, the OVN implementation of DHCP involves configuration in the NB DB and logical flows in the SB DB.

Let’s look at the DHCP support for a’s port ap. The port’s Logical_Switch_Port record shows that ap has DHCPv4
options:

3.4. OVN OpenStack Tutorial 121

Open vSwitch, Release 2.9.4

$ ovn-nbctl list logical_switch_port ap | abbrev

_uuid : efl7e5b

addresses : ["fa:16:3e:a9:4c:c7 10.1.1.5 fcll::5"]
dhcpv4_options : 165974

dhcpvé_options : 26f7cd

dynamic_addresses HEE

enabled : true

external_ids : {"neutron:port_name"=ap}

name : "820c08"

options {1}

parent_name |

port_security : ["fa:16:3e:a9:4c:c7 10.1.1.5 fcll::5"]
tag ¢ [

tag_request ¢ [

type HE

up : true

We can then list them either by UUID or, more easily, by port name:

$ ovn-nbctl list dhcp_options ap | abbrev

_uuid : 165974

cidr : "10.1.1.0/24"

external_ids : {subnet_id="5e67e7"}

options : {lease_time="43200", mtu="1442", router="10.1.1.1", server_id=

—~"10.1.1.1", server_mac="fa:16:3e:bb:94:72"}

These options show the basic DHCP configuration for the subnet. They do not include the IP address itself, which
comes from the Logical_Switch_Port record. This allows a whole Neutron subnet to share a single DHCP_Options
record. You can see this sharing in action, if you like, by listing the record for port bp, which is on the same subnet as
ap, and see that it is the same record as before:

$ ovn-nbctl list dhcp_options bp | abbrev

_uuid : 165974

cidr : "10.1.1.0/24"

external_ids : {subnet_id="5e67e7"}

options : {lease_time="43200", mtu="1442", router="10.1.1.1", server_id=

—~"10.1.1.1", server_mac="fa:16:3e:bb:94:72"}

You can take another look at the southbound flow table if you like, but the best demonstration is to trace a DHCP
packet. The following is a trace of a DHCP request inbound from ap. The first part is just the usual travel through the
firewall:

$ ovn-trace nl 'inport == "ap" && eth.src == '$SAP_MAC' && eth.dst ==
—ffrffiff:ff:ff:ff && ipd.dst == 255.255.255.255 && udp.src == 68 && udp.dst == 67 &&
— ip.ttl == 1"

ingress (dp="nl", inport="ap")

0. ls_in_port_sec_12 (ovn-northd.c:3234): inport == "ap" && eth.src ==
—~{fa:16:3e:a9:4c:c7}, priority 50, uuid 6dcc4l8a

next;
1. 1ls_in_port_sec_ip (ovn-northd.c:2325): inport == "ap" && eth.src ==_
—~fa:16:3e:a9:4c:c7 && ip4d.src == 0.0.0.0 && ipd.dst == 255.255.255.255 && udp.src ==
—~68 && udp.dst == 67, priority 90, uuid e46bed6f

next;
3. 1ls_in_pre_acl (ovn-northd.c:2646): ip, priority 100, uuid 46c089%e6

reg0[0] = 1;

(continues on next page)

122 Chapter 3. Tutorials

Open vSwitch, Release 2.9.4

(continued from previous page)

next;
5. 1ls_in_pre_stateful (ovn-northd.c:2764): reg0[0] == 1, priority 100, uuid d1941634
ct_next;

The next part is the new part. First, an ACL in table 6 allows a DHCP request to pass through. In table 11, the special
put_dhcp_opts action replaces a DHCPDISCOVER or DHCPREQUEST packet by a reply. Table 12 flips the
packet’s source and destination and sends it back the way it came in:

6. 1ls_in_acl (ovn-northd.c:2925): !ct.new && ct.est && !ct.rpl && ct_label.blocked
== 0 && (inport == "ap" && ip4 && ip4.dst == {255.255.255.255, 10.1.1.0/24} && udp &
—~& udp.src == 68 && udp.dst == 67), priority 2002, uuid 9c¢90245d

next;
11. 1s_in_dhcp_options (ovn-northd.c:3409): inport == "ap" && eth.src ==
—~fa:16:3e:a9:4c:c7 && ip4d.src == 0.0.0.0 && ipd.dst == 255.255.255.255 && udp.src ==
—68 && udp.dst == 67, priority 100, uuid 8d63f29c

reg0[3] = put_dhcp_opts(offerip = 10.1.1.5, lease_time = 43200, mtu = 1442,

—netmask = 255.255.255.0, router = 10.1.1.1, server_id = 10.1.1.1);
/+ We assume that this packet is DHCPDISCOVER or DHCPREQUEST. x/

next;
12. 1ls_in_dhcp_response (ovn-northd.c:3438): inport == "ap" && eth.src ==
—~fa:16:3e:a9:4c:c7 && ip4 && udp.src == 68 && udp.dst == 67 && reg0[3], priority 100,

— uuid 995eeaa?d
eth.dst = eth.src;
eth.src = fa:16:3e:bb:94:72;
ipd.dst = 10.1.1.5;
ipd4.src = 10.1.1.1;
udp.src = 67;
udp.dst = 68;

outport = inport;
flags.loopback = 1;
output;

Then the last part is just traveling back through the firewall to VM a:

egress (dp="nl", inport="ap", outport="ap")
1. 1ls_out_pre_acl (ovn-northd.c:2648): ip, priority 100, uuid 3752b746
reg0[0] = 1;

next;
2. ls_out_pre_stateful (ovn-northd.c:2766): reg0[0] == 1, priority 100, uuid 0OcO66eal
ct_next;
ct_next (ct_state=est |trk /+ default (use —-ct to customize) =*/)
4. ls_out_acl (ovn—northd.c:3008): outport == "ap" && eth.src == fa:16:3e:bb:94:72 &&
— ipd.src == 10.1.1.1 && udp && udp.src == 67 && udp.dst == 68, priority 34000, uuid,
—0b383e77
ct_commit;
next;
7. ls_out_port_sec_ip (ovn-northd.c:2364): outport == "ap" && eth.dst ==
—~fa:16:3e:a9:4c:c7 && ipd.dst == {255.255.255.255, 224.0.0.0/4, 10.1.1.5}, priority,,
90, uuid 7b8cbcd5
next;
8. ls_out_port_sec_12 (ovn-northd.c:3654): outport == "ap" && eth.dst ==
—~{fa:16:3e:a9:4c:c7}, priority 50, uuid b874ece8
output;
/+ output to "ap", type "" x/

3.4. OVN OpenStack Tutorial 123

Open vSwitch, Release 2.9.4

3.4.11 Further Directions

We’ve looked at a fair bit of how OVN works and how it interacts with OpenStack. If you still have some interest,
then you might want to explore some of these directions:

* Adding more than one hypervisor (“compute node”, in OpenStack parlance). OVN connects compute nodes
by tunneling packets with the STT or Geneve protocols. OVN scales to 1000 compute nodes or more, but two
compute nodes demonstrate the principle. All of the tools and techniques we demonstrated also work with
multiple compute nodes.

 Container support. OVN supports seamlessly connecting VMs to containers, whether the containers are hosted
on “bare metal” or nested inside VMs. OpenStack support for containers, however, is still evolving, and too
difficult to incorporate into the tutorial at this point.

* Other kinds of gateways. In addition to floating IPs with NAT, OVN supports directly attaching VMs to a
physical network and connecting logical switches to VTEP hardware.

124 Chapter 3. Tutorials

CHAPTER 4

Deep Dive

How Open vSwitch and OVN are implemented and, where necessary, why it was implemented that way.

4.1 OVS

4.1.1 Design Decisions In Open vSwitch

This document describes design decisions that went into implementing Open vSwitch. While we believe these to be
reasonable decisions, it is impossible to predict how Open vSwitch will be used in all environments. Understanding
assumptions made by Open vSwitch is critical to a successful deployment. The end of this document contains contact
information that can be used to let us know how we can make Open vSwitch more generally useful.

Asynchronous Messages
Over time, Open vSwitch has added many knobs that control whether a given controller receives OpenFlow asyn-
chronous messages. This section describes how all of these features interact.

First, a service controller never receives any asynchronous messages unless it changes its miss_send_len from the
service controller default of zero in one of the following ways:

e Sending an OFPT_SET_CONF IG message with nonzero miss_send_len.

e Sending any NXT_SET_ASYNC_CONFIG message: as a side effect, this message changes the
miss_send_lento OFP_DEFAULT_MISS_SEND_LEN (128) for service controllers.

Second, OFPT_FLOW_REMOVED and NXT_FLOW_REMOVED messages are generated only if the flow that was re-
moved had the OFPFF_SEND_FLOW_REM flag set.

Third, OFPT_PACKET_IN and NXT_PACKET_IN messages are sent only to OpenFlow controller connections that
have the correct connection ID (see struct nx_controller_idand struct nx_action_controller):

* For packet-in messages generated by a NXAST_CONTROLLER action, the controller ID specified in the action.

125

Open vSwitch, Release 2.9.4

* For other packet-in messages, controller ID zero. (This is the default ID when an OpenFlow controller does not
configure one.)

Finally, Open vSwitch consults a per-connection table indexed by the message type, reason code, and current role.
The following table shows how this table is initialized by default when an OpenFlow connection is made. An entry
labeled ye s means that the message is sent, an entry labeled ——— means that the message is suppressed.

Table 1: OFPT_PACKET_IN/NXT_PACKET_IN

message and reason code other | slave
OFPR_NO_MATCH yes —
OFPR_ACTION yes —

OFPR_INVALID_TTL — —
OFPR_ACTION_SET (OF1.4+) | yes —
OFPR_GROUP (OF1.4+) yes —
OFPR_PACKET_OUT (OF1.4+) | yes —

Table 2: OFPT_FLOW_REMOVED / NXT_FLOW_REMOVED

message and reason code other | slave
OFPRR_IDLE_TIMEOUT yes —
OFPRR_HARD_TIMEOUT yes —
OFPRR_DELETE yes —

OFPRR_GROUP_DELETE (OF1.34) | yes —
OFPRR_METER_DELETE (OF1.4+) | yes —
OFPRR_EVICTION (OF1.4+) yes —

Table 3: OFPT_PORT_STATUS

message and reason code | other | slave
OFPPR_ADD yes yes
OFPPR_DELETE yes yes
OFPPR_MODIFY yes yes

Table 4: OFPT_ROLE_REQUEST / OFPT_ROLE_REPLY (OF1.4+)
message and reason code other | slave
OFPCRR_MASTER_REQUEST | — —
OFPCRR_CONFIG — —
OFPCRR_EXPERIMENTER — —

Table 5: OFPT_TABLE_STATUS (OF1.4+)
message and reason code | other | slave
OFPTR_VACANCY_DOWN — —
OFPTR_VACANCY_UP — —

Table 6: OFPT_REQUESTFORWARD (OF1.4+)
message and reason code | other | slave
OFPRFR_GROUP_MOD — —
OFPRFR_METER_MOD — —

126 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

The NXT_SET_ASYNC_CONFIG message directly sets all of the values in this table for the current connection.
The OFPC_INVALID_TTL_TO_CONTROLLER bit in the OFPT_SET_CONFIG message controls the setting for
OFPR_INVALID_TTL for the “master” role.

OFPAT_ENQUEUE

The OpenFlow 1.0 specification requires the output port of the OFPAT_ENQUEUE action to “refer to a valid phys-
ical port (i.e. < OFPP_MAX) or OFPP_IN_PORT”. Although OFPP_LOCAL is not less than OFPP_MAX, it is an
‘internal’ port which can have QoS applied to it in Linux. Since we allow the OFPAT_ENQUEUE to apply to ‘inter-
nal’ ports whose port numbers are less than OFPP_MAX, we interpret OFPP__LOCAL as a physical port and support
OFPAT_ENQUEUE on it as well.

OFPT_FLOW_MOD

The OpenFlow specification for the behavior of OFPT_FLOW_MOD is confusing. The following tables summarize the
Open vSwitch implementation of its behavior in the following categories:

“match on priority” Whether the flow_mod acts only on flows whose priority matches that included in the
flow_mod message.

“match on out_port” Whether the f1ow_mod acts only on flows that output to the out_port included in the
flow_mod message (if out_port is not OFPP_NONE). OpenFlow 1.1 and later have a similar feature (not listed
separately here) for out_group.

“match on flow_cookie”: Whether the £1ow_mod acts only on flows whose f1low_cookie matches an optional
controller-specified value and mask.

“updates flow_cookie”: Whether the f1ow_mod changes the f1ow_cookie of the flow or flows that it matches
to the f1ow_cookie included in the flow_mod message.

‘“updates OFPFF__ flags”: Whether the flow_mod changes the OFPFF_SEND_FLOW_REM flag of the flow or flows
that it matches to the setting included in the flags of the flow_mod message.

“honors OFPFF_CHECK_OVERLAP”: Whether the OFPFF_CHECK_OVERLAP flag in the flow_mod is significant.

‘“updates idle_timeout” and ‘“updates hard_timeout”: Whetherthe idle_timeout and hard_timeout in
the £ low_mod, respectively, have an effect on the flow or flows matched by the £1ow_mod.

‘“updates idle timer”’: Whether the f1ow_mod resets the per-flow timer that measures how long a flow has been
idle.

‘“updates hard timer”’: Whether the £1ow_mod resets the per-flow timer that measures how long it has been since a
flow was modified.

“zeros counters”: Whether the £ 1ow_mod resets per-flow packet and byte counters to zero.

“may add a new flow”: Whether the £1ow_mod may add a new flow to the flow table. (Obviously this is always true
for “add” commands but in some OpenFlow versions “modify” and “modify-strict” can also add new flows.)

“sends £low_removed message”’: Whether the flow_mod generates a flow_removed message for the flow or flows
that it affects.

An entry labeled yes means that the flow mod type does have the indicated behavior, ——— means that it does not, an
empty cell means that the property is not applicable, and other values are explained below the table.

4.1. OVS 127

Open vSwitch, R

elease 2.9.4

OpenFlow 1.0

RULE

ADD

STRICT

STRICT

match on
priority

yes

MODIFY

yes

DELETE

yes

match on
out_port

yes

yes

match on
flow_cookie

match on
table_id

controller
chooses
table_id

updates
flow_cookie

yes

yes

yes

updates
OFPFF_SEND_F

yes
LOW_REM

honors
OFPFF_CHECK_|

yes
OVERLAP

updates
idle_timeout

yes

updates
hard_timeout

yes

resets idle timer

yes

resets hard timer

yes

yes

yes

Zeros counters

yes

may add a new
flow

yes

yes

yes

sends
flow_removed
message

%

%

where:

+ “modify” and “modify-strict” only take these actions when they create a new flow, not when they update an existing
flow.

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

OpenFlow 1.1

OpenFlow 1.1 makes these changes:

* The controller now must specify the table_id of the flow match searched and into which a flow may be
inserted. Behavior for a table_id of 255 is undefined.

128 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

* A flow_mod, except an “add”, can now match on the flow_cookie.

* When a f1ow_mod matches on the f1ow_cookie, “modify” and “modify-strict” never insert a new flow.

RULE ADD MODIFY STRICT DELETE STRICT
match on | yes — yes — yes
priority

match on | — — — yes yes
out_port

match on | — yes yes yes yes
flow_cookie

match on | yes yes yes yes yes
table_id

controller yes yes yes

chooses

table_id

updates yes — —

flow_cookie

updates yes R .

OFPFF_SEND_F|ILOW_REM

honors yes . .

OFPFF_CHECK_[OVERLAP

updates yes R .

idle_timeout

updates yes R .

hard_timeout

resets idle timer | yes R .

resets hard timer | yes yes yes

Zeros counters yes . .

may add a new | yes # #

flow

sends — — — % %
flow_removed,|

message

where:

+ “modify” and “modify-strict” only take these actions when they create a new flow, not when they update an existing
flow.

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

“modify” and “modify-strict” only add a new flow if the flow_mod does not match on any bits of the flow cookie

OpenFlow 1.2

OpenFlow 1.2 makes these changes:

4.1. OVS 129

Open vSwitch, Release 2.9.4

* Only “add” commands ever add flows, “modify” and “modify-strict” never do.

* A new flag OFPFF_RESET_COUNTS now controls whether “modify” and “modify-strict” reset counters,
whereas previously they never reset counters (except when they inserted a new flow).

RULE ADD | MODIFY | STRICT | DELETE | STRICT
match on priority yes — yes — yes
match on out_port — — — yes yes
match on flow_cookie — yes yes yes yes
match on table_id yes yes yes yes yes
controller chooses table_id yes yes yes

updates flow_cookie yes — —

updates OFPFF_SEND_FLOW_REM | yes — —
honors OFPFF_CHECK_OVERLAP yes — —

updates idle_timeout yes — —

updates hard_timeout yes — —

resets idle timer yes — —

resets hard timer yes yes yes

Zeros counters yes & &

may add a new flow yes — —

sends flow_removed message — — — % %

% “delete” and “delete_strict” generates a flow_removed message if the deleted flow or flows have the
OFPFF_SEND_FLOW_REM flag set. (Each controller can separately control whether it wants to receive the
generated messages.)

& “modify” and “modify-strict” reset counters if the OFPFF_RESET_COUNTS flag is specified.

OpenFlow 1.3

OpenFlow 1.3 makes these changes:

* Behavior for a table_id of 255 is now defined, for “delete” and “delete-strict” commands, as meaning to delete
from all tables. A table_id of 255 is now explicitly invalid for other commands.

e New flags OFPFF_NO_PKT_COUNTS and OFPFF_NO_BYT_COUNTS for “add” operations.

The table for 1.3 is the same as the one shown above for 1.2.

OpenFlow 1.4

OpenFlow 1.4 makes these changes:

* Adds the “importance” field to £1ow_mods, but it does not explicitly specify which kinds of £1ow_mods set
the importance. For consistency, Open vSwitch uses the same rule for importance as for idle_timeout and
hard_timeout, that is, only an “ADD” flow_mod sets the importance. (This issue has been filed with the
ONF as EXT-496.)

* Eviction Mechanism to automatically delete entries of lower importance to make space for newer entries.
OpenFlow 1.4 Bundles

Open vSwitch makes all flow table modifications atomically, i.e., any datapath packet only sees flow table configura-
tions either before or after any change made by any £1ow_mod. For example, if a controller removes all flows with a

130 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

single OpenFlow f1ow_mod, no packet sees an intermediate version of the OpenFlow pipeline where only some of
the flows have been deleted.

It should be noted that Open vSwitch caches datapath flows, and that the cached flows are NOT flushed immediately
when a flow table changes. Instead, the datapath flows are revalidated against the new flow table as soon as possible,
and usually within one second of the modification. This design amortizes the cost of datapath cache flushing across
multiple flow table changes, and has a significant performance effect during simultaneous heavy flow table churn and
high traffic load. This means that different cached datapath flows may have been computed based on a different flow
table configurations, but each of the datapath flows is guaranteed to have been computed over a coherent view of the
flow tables, as described above.

With OpenFlow 1.4 bundles this atomicity can be extended across an arbitrary set of £1ow_mod. Bundles are sup-
ported for £1ow_mod and port_mod messages only. For £1ow_mod, both atomic and ordered bundle flags are
trivially supported, as all bundled messages are executed in the order they were added and all flow table modifications
are now atomic to the datapath. Port mods may not appear in atomic bundles, as port status modifications are not
atomic.

To support bundles, ovs-ofctl has a ——bundle option that makes the flow mod commands (add-flow,
add-flows,mod-flows,del-flows, and replace—flows) use an OpenFlow 1.4 bundle to operate the mod-
ifications as a single atomic transaction. If any of the flow mods in a transaction fail, none of them are executed. All
flow mods in a bundle appear to datapath lookups simultaneously.

Furthermore, ovs-ofctl add-f1low and add-f1ows commands now accept arbitrary flow mods as an input by allow-
ing the flow specification to start with an explicit add, modify,modify_strict,delete,ordelete_strict
keyword. A missing keyword is treated as add, so this is fully backwards compatible. With the new ——bundle
option all the flow mods are executed as a single atomic transaction using an OpenFlow 1.4 bundle. Without the
—-bundle option the flow mods are executed in order up to the first failing £1ow_mod, and in case of an error the
earlier successful £1ow_mod calls are not rolled back.

OFPT_PACKET_IN

The OpenFlow 1.1 specification for OFPT_PACKET_IN is confusing. The definition in OF1.1 openflow.h is[*]:

/* Packet received on port (datapath -> controller). =/
struct ofp_packet_in {
struct ofp_header header;

uint32_t buffer_id; /* ID assigned by datapath. */

uint32_t in_port; /+ Port on which frame was received. =/

uint32_t in_phy_port; /+ Physical Port on which frame was received. */
uintl6_t total_len; /* Full length of frame. «/

uint8_t reason; /+ Reason packet is being sent (one of OFPR_x*) «/
uint8_t table_id; /+ ID of the table that was looked up =*/

uint8_t datal0]; /* Ethernet frame, halfway through 32-bit word,

so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof (struct ofp_packet_in, data) ==
sizeof (struct ofp_packet_in) - 2. */

}i

OFP_ASSERT (sizeof (struct ofp_packet_in) == 24);

The confusing part is the comment on the data [] member. This comment is a leftover from OF1.0 openflow.h,in
which the comment was correct: sizeof (struct ofp_packet_in) is 20 in OF1.0 and ffsetof (struct
ofp_packet_in, data) is 18. When OFI1.1 was written, the structure members were changed but the com-
ment was carelessly not updated, and the comment became wrong: sizeof (struct ofp_packet_in) and
offsetof(struct ofp_packet_in, data) are both 24 in OF1.1.

4.1. OVS 131

Open vSwitch, Release 2.9.4

That leaves the question of how to implement ofp_packet_in in OF1.1. The OpenFlow reference implementation
for OF1.1 does not include any padding, that is, the first byte of the encapsulated frame immediately follows the
table_id member without a gap. Open vSwitch therefore implements it the same way for compatibility.

For an earlier discussion, please see the thread archived at: https://mailman.stanford.edu/pipermail/openflow-discuss/
2011-August/002604.html

[*] The quoted definition is directly from OF1.1. Definitions used inside OVS omit the 8-byte ofp_header mem-
bers, so the sizes in this discussion are 8 bytes larger than those declared in OVS header files.

VLAN Matching

The 802.1Q VLAN header causes more trouble than any other 4 bytes in networking. More specifically, three versions
of OpenFlow and Open vSwitch have among them four different ways to match the contents and presence of the
VLAN header. The following table describes how each version works.

Match | NXM OF1.0 OF1.1 OF1.2

[1] 0000/0000 | ?2222/1,22/2 | 2222/1,22/2 | 0000/0000,——
2] 0000/ffff | ££££/0,22/2 | ££££/0,22/2 | 0000/ ff£ff, ——
[3] 1xxx/1fff | 0xxx/0,??2/1 | Oxxx/0,7?2?/1 | 1xxx/ffff, ——
[4] z000/£000 | 2222/1,0y/0 | £££e/0,0y/0 | 1000/1000, Oy
[5] zxxx/fE£ff | Oxxx/0,0y/0 | 0xxx/0,0y/0 | lxxx/ffff, Oy
[6] 0000/0fff | <none> <none> <none>

[7] 0000/£f000 | <none> <none> <none>

[8] 0000/efff | <none> <none> <none>

[9] 1001/1001 | <none> <none> 1001/1001, ——
[10] 3000/3000 | <none> <none> <none>

[11] 1000/1000 | <none> fffe/0,22/1 | 1000/1000, —-

where:
Match: See the list below.

NXM: xxxx/yyyy means NXM_OF_VLAN_TCI_W with value xxxx and mask yyyy. A mask of 0000 is equiv-
alent to omitting NXM_OF_VLAN_TCI (_W), amask of £fff is equivalent to NXM_OF_VLAN_TCI.

OF1.0, OF1.1: wwww/x,yy/z means dl_vlan wwww, OFPFW_DIL_VLAN x, dl_vlan_pcp yy, and
OFPFW_DL_VLAN_PCP z. If OFPFW_DL_VLAN or OFPFW_DL_VLAN_PCP is 1, the corresponding field
value is wildcarded, otherwise it is matched. ? means that the given bits are ignored (their conventional values
are 0000/x, 00/0 in OF1.0, 0000/x%, 00/1 in OF1.1; x is never ignored). <none> means that the given
match is not supported.

OF1.2: xxxx/yyyy,zz means OXM_OF_VLAN_VID_W with value and mask yyyy, and
OXM_OF_VLAN_PCP (which is not maskable) with value zz. A mask of 0000 is equivalent to omit-
ting OXM_OF_VLAN_VID (_W), a mask of £££ff is equivalent to OXM_OF_VLAN_VID. —— means that
OXM_OF_VLAN_PCP is omitted. <none> means that the given match is not supported.

XXXX

The matches are:
[1]1: Matches any packet, that is, one without an 802.1Q header or with an 802.1Q header with any TCI value.
[2] Matches only packets without an 802.1Q header.

NXM: Any matchwithvlan_tci == Oand (vlan_tci_mask & 0x1000)
one listed in the table.

!= 0 isequivalent to the

OF1.0: The spec doesn’t define behavior if d1_vlan is set to Oxffff and OFPFW_DIL_VLAN_PCP is not
set.

132 Chapter 4. Deep Dive

https://mailman.stanford.edu/pipermail/openflow-discuss/2011-August/002604.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-August/002604.html

Open vSwitch, Release 2.9.4

OF1.1: The spec says explicitly to ignore d1_vlan_pcp whendl_vlanissetto Oxffff.

OF1.2: The spec doesn’t say what should happen if vlian_vid == 0 and (vlan_vid_mask &
0x1000) != Obutvlan_vid _mask != 0x1000, butit would be straightforward to also interpret
as [2].

[3] Matches only packets that have an 802.1Q header with VID xxx (and any PCP).
[4] Matches only packets that have an 802.1Q header with PCP y (and any VID).
NXM: zis (y << 1) | 1.
OF1.0: The spec isn’t very clear, but OVS implements it this way.

OF1.2: Presumably other masks such that (vlan_vid_mask & 0x1fff) == 0x1000 would also work,
but the spec doesn’t define their behavior.

[5]1 Matches only packets that have an 802.1Q header with VID xxx and PCP y.
NXM: zis ((y << 1) | 1).

OF1.2: Presumably other masks such that (vlan_vid_mask & Ox1fff) == Ox1fff
would also work.

[6] Matches packets with no 802.1Q header or with an 802.1Q header with a VID of 0. Only possible with NXM.
[7]1 Matches packets with no 802.1Q header or with an 802.1Q header with a PCP of 0. Only possible with NXM.

[8] Matches packets with no 802.1Q header or with an 802.1Q header with both VID and PCP of 0. Only possible
with NXM.

[9] Matches only packets that have an 802.1Q header with an odd-numbered VID (and any PCP). Only possible
with NXM and OF1.2. (This is just an example; one can match on any desired VID bit pattern.)

[10] Matches only packets that have an 802.1Q header with an odd-numbered PCP (and any VID). Only possible
with NXM. (This is just an example; one can match on any desired VID bit pattern.)

[11] Matches any packet with an 802.1Q header, regardless of VID or PCP.
Additional notes:

OF1.2: The top three bits of OXM_OF_VLAN_VID are fixed to zero, so bits 13, 14, and 15 in the masks listed in the
table may be set to arbitrary values, as long as the corresponding value bits are also zero. The suggested f£ff
mask for [2], [3], and [5] allows a shorter OXM representation (the mask is omitted) than the minimal 1 fff
mask.

Flow Cookies
OpenFlow 1.0 and later versions have the concept of a “flow cookie”, which is a 64-bit integer value attached to each
flow. The treatment of the flow cookie has varied greatly across OpenFlow versions, however.
In OpenFlow 1.0:
e OFPFC_ADD set the cookie in the flow that it added.
* OFPFC_MODIFY and OFPFC_MODIFY_STRICT updated the cookie for the flow or flows that it modified.
* OFPST_FLOW messages included the flow cookie.
e OFPT_FLOW_REMOVED messages reported the cookie of the flow that was removed.

OpenFlow 1.1 made the following changes:

4.1. OVS 133

Open vSwitch, Release 2.9.4

e Flow mod operations OFPFC_MODIFY, OFPFC_MODIFY_STRICT, OFPFC_DELETE, and
OFPFC_DELETE_STRICT, plus flow stats requests and aggregate stats requests, gained the ability to
match on flow cookies with an arbitrary mask.

e OFPFC_MODIFY and OFPFC_MODIFY_STRICT were changed to add a new flow, in the case of no match,
only if the flow table modification operation did not match on the cookie field. (In OpenFlow 1.0, modify
operations always added a new flow when there was no match.)

* OFPFC_MODIFY and OFPFC_MODIFY_STRICT no longer updated flow cookies.
OpenFlow 1.2 made the following changes:

* OFPC_MODIFY and OFPFC_MODIFY_STRICT were changed to never add a new flow, regardless of whether
the flow cookie was used for matching.

Open vSwitch support for OpenFlow 1.0 implements the OpenFlow 1.0 behavior with the following extensions:

e An NXM extension field NXM_NX_COOKIE (_W) allows the NXM versions of OFPFC_MODIFY,
OFPFC_MODIFY_STRICT, OFPFC_DELETE, and OFPFC_DELETE_STRICT flow_mod calls, plus flow
stats requests and aggregate stats requests, to match on flow cookies with arbitrary masks. This is much like the
equivalent OpenFlow 1.1 feature.

 Like OpenFlow 1.1, OFPC_MODIFY and OFPFC_MODIFY_STRICT add a new flow if there is no match and
the mask is zero (or not given).

e The cookie field in OFPT_FLOW_MOD and NXT_FLOW_MOD messages is used as the cookie
value for OFPFC_ADD commands, as described in OpenFlow 1.0. For OFPFC_MODIFY and
OFPFC_MODIFY_STRICT commands, the cookie field is used as a new cookie for flows that match un-
less it is UINT 64_MAX, in which case the flow’s cookie is not updated.

e NXT_PACKET_IN (the Nicira extended version of OFPT_PACKET_IN) reports the cookie of the rule that
generated the packet, or all-1-bits if no rule generated the packet. (Older versions of OVS used all-0-bits instead
of all-1-bits.)

The following table shows the handling of different protocols when receiving OFPFC_MODIFY and
OFPFC_MODIFY_STRICT messages. A mask of O indicates either an explicit mask of zero or an implicit one
by not specifying the NXM_NX_COOKIE (_W) field.

OpenFlow 1.0 | no | yes

(add on miss)

(add on miss)

OpenFlow 1.1 | yes | no no yes
OpenFlow 1.2 | yes | no no no
NXM yes | yes* | no yes

* Updates the flow’s cookie unless the cookie field is UINT64_MAX.

Multiple Table Support

OpenFlow 1.0 has only rudimentary support for multiple flow tables. Notably, OpenFlow 1.0 does not allow the
controller to specify the flow table to which a flow is to be added. Open vSwitch adds an extension for this purpose,
which is enabled on a per-OpenFlow connection basis using the NXT_FLOW_MOD_TABLE_ ID message. When the
extension is enabled, the upper 8 bits of the command member in an OFPT_FLOW_MOD or NXT_FLOW_MOD message
designates the table to which a flow is to be added.

The Open vSwitch software switch implementation offers 255 flow tables. On packet ingress, only the first flow table
(table 0) is searched, and the contents of the remaining tables are not considered in any way. Tables other than table 0
only come into play when an NXAST_RESUBMIT_TABLE action specifies another table to search.

Tables 128 and above are reserved for use by the switch itself. Controllers should use only tables O through 127.

134 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

OFPTC_* Table Configuration

This section covers the history of the OFPTC_ « table configuration bits across OpenFlow versions.
OpenFlow 1.0 flow tables had fixed configurations.

OpenFlow 1.1 enabled controllers to configure behavior upon flow table miss and added the OFPTC_MISS_* con-
stants for that purpose. OFPTC_« did not control anything else but it was nevertheless conceptualized as a set of
bit-fields instead of an enum. OF1.1 added the OFPT_TABLE_MOD message to set OFPTC_MISS_ « for a flow table
and added the config field to the OFPST_TABLE reply to report the current setting.

OpenFlow 1.2 did not change anything in this regard.

OpenFlow 1.3 switched to another means to changing flow table miss behavior and deprecated OFPTC_MISS_ » with-
out adding any more OFPTC__+ constants. This meant that OFPT_TABLE_MOD now had no purpose at all, but OF1.3
kept it around “for backward compatibility with older and newer versions of the specification.” At the same time,
OF1.3 introduced a new message OFPMP_TABLE_FEATURES that included a field config documented as report-
ing the OFPTC_ + values set with OFPT_TABLE_MOD; of course this served no real purpose because no OFPTC_ %
values are defined. OF1.3 did remove the OFPTC_ « field from OFPMP_TABLE (previously named OFPST_TABLE).

OpenFlow 1.4 defined two new OFPTC_« constants, OFPTC_EVICTION and OFPTC_VACANCY_EVENTS, us-
ing bits that did not overlap with OFPTC_MISS_«* even though those bits had not been defined since OF1.2.
OFPT_TABLE_MOD still controlled these settings. The field for OFPTC_» values in OFPMP_TABLE_FEATURES
was renamed from config to capabilities and documented as reporting the flags that are supported in a
OFPT_TABLE_MOD message. The OFPMP_TABLE_DESC message newly added in OF1.4 reported the OFPTC_
setting.

OpenFlow 1.5 did not change anything in this regard.

Table 7: Revisions

Open- OFPTC_~ flags TABLE_MOD | Statis- TABLE_FEATURES| TABLE_DESC
Flow tics
OF1.0 none no (*)(+) no (*) nothing (*)(+) no (*)(+)
OF1.1/1.2 | MISS_«* yes yes nothing (+) no (+)
OF1.3 none yes (¥) no (*) config (*) no (*)(+)
OF1.4/1.5 | EVICTION/VACANCY_EVENTSY yes no capabilities yes

where:

OpenFlow: The OpenFlow version(s).

OFPTC_ * flags: The OFPTC_ « flags defined in those versions.

TABLE_MOD: Whether OFPT_TABLE_MOD can modify OFPTC_ « flags.
Statistics: Whether OFPST_TABLE/OFPMP_TABLE reports the OFPTC_ « flags.

TABLE_FEATURES: What OFPMP_TABLE_FEATURES reports (if it exists): either the current configuration or the
switch’s capabilities.

TABLE_DESC: Whether OFPMP_TABLE_DESC reports the current configuration.
(*): Nothing to report/change anyway.

(+): No such message.

4.1. OVS 135

Open vSwitch, Release 2.9.4

IPv6
Open vSwitch supports stateless handling of IPv6 packets. Flows can be written to support matching TCP, UDP, and
ICMPv6 headers within an IPv6 packet. Deeper matching of some Neighbor Discovery messages is also supported.

IPv6 was not designed to interact well with middle-boxes. This, combined with Open vSwitch’s stateless nature, have
affected the processing of IPv6 traffic, which is detailed below.

Extension Headers

The base IPv6 header is incredibly simple with the intention of only containing information relevant for routing
packets between two endpoints. IPv6 relies heavily on the use of extension headers to provide any other functionality.
Unfortunately, the extension headers were designed in such a way that it is impossible to move to the next header
(including the layer-4 payload) unless the current header is understood.

Open vSwitch will process the following extension headers and continue to the next header:
» Fragment (see the next section)

AH (Authentication Header)

* Hop-by-Hop Options
* Routing
* Destination Options

When a header is encountered that is not in that list, it is considered “terminal”. A terminal header’s IPv6 protocol
value is stored in nw_proto for matching purposes. If a terminal header is TCP, UDP, or ICMPv6, the packet will
be further processed in an attempt to extract layer-4 information.

Fragments

IPv6 requires that every link in the internet have an MTU of 1280 octets or greater (RFC 2460). As such, a terminal
header (as described above in “Extension Headers”) in the first fragment should generally be reachable. In this case,
the terminal header’s IPv6 protocol type is stored in the nw_proto field for matching purposes. If a terminal header
cannot be found in the first fragment (one with a fragment offset of zero), the nw_proto field is set to 0. Subsequent
fragments (those with a non-zero fragment offset) have the nw_proto field set to the IPv6 protocol type for fragments
(44).

Jumbograms

An IPv6 jumbogram (RFC 2675) is a packet containing a payload longer than 65,535 octets. A jumbogram is only
relevant in subnets with a link MTU greater than 65,575 octets, and are not required to be supported on nodes that do
not connect to link with such large MTUs. Currently, Open vSwitch doesn’t process jumbograms.

In-Band Control

Motivation

An OpenFlow switch must establish and maintain a TCP network connection to its controller. There are two basic
ways to categorize the network that this connection traverses: either it is completely separate from the one that the
switch is otherwise controlling, or its path may overlap the network that the switch controls. We call the former case
“out-of-band control”, the latter case “in-band control”.

136 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

Out-of-band control has the following benefits:
» Simplicity: Out-of-band control slightly simplifies the switch implementation.
 Reliability: Excessive switch traffic volume cannot interfere with control traffic.
¢ Integrity: Machines not on the control network cannot impersonate a switch or a controller.
* Confidentiality: Machines not on the control network cannot snoop on control traffic.
In-band control, on the other hand, has the following advantages:

* No dedicated port: There is no need to dedicate a physical switch port to control, which is important on switches
that have few ports (e.g. wireless routers, low-end embedded platforms).

* No dedicated network: There is no need to build and maintain a separate control network. This is important in
many environments because it reduces proliferation of switches and wiring.

Open vSwitch supports both out-of-band and in-band control. This section describes the principles behind in-band
control. See the description of the Controller table in ovs-vswitchd.conf.db(5) to configure OVS for in-band control.

Principles

The fundamental principle of in-band control is that an OpenFlow switch must recognize and switch control traffic
without involving the OpenFlow controller. All the details of implementing in-band control are special cases of this
principle.

The rationale for this principle is simple. If the switch does not handle in-band control traffic itself, then it will be
caught in a contradiction: it must contact the controller, but it cannot, because only the controller can set up the flows
that are needed to contact the controller.

The following points describe important special cases of this principle.
* In-band control must be implemented regardless of whether the switch is connected.

It is tempting to implement the in-band control rules only when the switch is not connected to the controller,
using the reasoning that the controller should have complete control once it has established a connection with
the switch.

This does not work in practice. Consider the case where the switch is connected to the controller. Occasionally
it can happen that the controller forgets or otherwise needs to obtain the MAC address of the switch. To do so,
the controller sends a broadcast ARP request. A switch that implements the in-band control rules only when it is
disconnected will then send an OFPT_PACKET_ IN message up to the controller. The controller will be unable
to respond, because it does not know the MAC address of the switch. This is a deadlock situation that can only
be resolved by the switch noticing that its connection to the controller has hung and reconnecting.

* In-band control must override flows set up by the controller.

It is reasonable to assume that flows set up by the OpenFlow controller should take precedence over in-band
control, on the basis that the controller should be in charge of the switch.

Again, this does not work in practice. Reasonable controller implementations may set up a “last resort” fallback
rule that wildcards every field and, e.g., sends it up to the controller or discards it. If a controller does that, then
it will isolate itself from the switch.

* The switch must recognize all control traffic.

The fundamental principle of in-band control states, in part, that a switch must recognize control traffic without
involving the OpenFlow controller. More specifically, the switch must recognize all control traffic. “False
negatives”, that is, packets that constitute control traffic but that the switch does not recognize as control traffic,
lead to control traffic storms.

4.1. OVS 137

Open vSwitch, Release 2.9.4

Consider an OpenFlow switch that only recognizes control packets sent to or from that switch. Now suppose
that two switches of this type, named A and B, are connected to ports on an Ethernet hub (not a switch) and that
an OpenFlow controller is connected to a third hub port. In this setup, control traffic sent by switch A will be
seen by switch B, which will send it to the controller as part of an OFPT_PACKET_IN message. Switch A will
then see the OFPT_PACKET _IN message’s packet, re-encapsulate it in another OFPT_PACKET_IN, and send
it to the controller. Switch B will then see that OFPT_PACKET_IN, and so on in an infinite loop.

Incidentally, the consequences of “false positives”, where packets that are not control traffic are nevertheless
recognized as control traffic, are much less severe. The controller will not be able to control their behavior, but
the network will remain in working order. False positives do constitute a security problem.

* The switch should use echo-requests to detect disconnection.

TCP will notice that a connection has hung, but this can take a considerable amount of time. For example, with
default settings the Linux kernel TCP implementation will retransmit for between 13 and 30 minutes, depend-
ing on the connection’s retransmission timeout, according to kernel documentation. This is far too long for a
switch to be disconnected, so an OpenFlow switch should implement its own connection timeout. OpenFlow
OFPT_ECHO_REQUEST messages are the best way to do this, since they test the OpenFlow connection itself.

Implementation

This section describes how Open vSwitch implements in-band control. Correctly implementing in-band control has
proven difficult due to its many subtleties, and has thus gone through many iterations. Please read through and
understand the reasoning behind the chosen rules before making modifications.

Open vSwitch implements in-band control as “hidden” flows, that is, flows that are not visible through OpenFlow,
and at a higher priority than wildcarded flows can be set up through OpenFlow. This is done so that the OpenFlow
controller cannot interfere with them and possibly break connectivity with its switches. It is possible to see all flows,
including in-band ones, with the ovs-appctl “bridge/dump-flows” command.

The Open vSwitch implementation of in-band control can hide traffic to arbitrary “remotes”, where each remote
is one TCP port on one IP address. Currently the remotes are automatically configured as the in-band OpenFlow
controllers plus the OVSDB managers, if any. (The latter is a requirement because OVSDB managers are responsible
for configuring OpenFlow controllers, so if the manager cannot be reached then OpenFlow cannot be reconfigured.)

The following rules (with the OFPP_NORMAL action) are set up on any bridge that has any remotes:
1. DHCP requests sent from the local port.
2. ARP replies to the local port’s MAC address.
3. ARP requests from the local port’s MAC address.

In-band also sets up the following rules for each unique next-hop MAC address for the remotes’ IPs (the “next hop” is
either the remote itself, if it is on a local subnet, or the gateway to reach the remote):

4. ARP replies to the next hop’s MAC address.
5. ARP requests from the next hop’s MAC address.
In-band also sets up the following rules for each unique remote IP address:
6. ARP replies containing the remote’s IP address as a target.
7. ARP requests containing the remote’s IP address as a source.
In-band also sets up the following rules for each unique remote (IP,port) pair:
8. TCP traffic to the remote’s IP and port.

9. TCP traffic from the remote’s IP and port.

138 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

The goal of these rules is to be as narrow as possible to allow a switch to join a network and be able to communicate
with the remotes. As mentioned earlier, these rules have higher priority than the controller’s rules, so if they are too
broad, they may prevent the controller from implementing its policy. As such, in-band actively monitors some aspects
of flow and packet processing so that the rules can be made more precise.

In-band control monitors attempts to add flows into the datapath that could interfere with its duties. The datapath only
allows exact match entries, so in-band control is able to be very precise about the flows it prevents. Flows that miss
in the datapath are sent to userspace to be processed, so preventing these flows from being cached in the “fast path”
does not affect correctness. The only type of flow that is currently prevented is one that would prevent DHCP replies
from being seen by the local port. For example, a rule that forwarded all DHCP traffic to the controller would not be
allowed, but one that forwarded to all ports (including the local port) would.

As mentioned earlier, packets that miss in the datapath are sent to the userspace for processing. The userspace has
its own flow table, the “classifier”, so in-band checks whether any special processing is needed before the classifier is
consulted. If a packet is a DHCP response to a request from the local port, the packet is forwarded to the local port,
regardless of the flow table. Note that this requires L7 processing of DHCP replies to determine whether the ‘chaddr’
field matches the MAC address of the local port.

It is interesting to note that for an L3-based in-band control mechanism, the majority of rules are devoted to ARP
traffic. At first glance, some of these rules appear redundant. However, each serves an important role. First, in order to
determine the MAC address of the remote side (controller or gateway) for other ARP rules, we must allow ARP traffic
for our local port with rules (b) and (c). If we are between a switch and its connection to the remote, we have to allow
the other switch’s ARP traffic to through. This is done with rules (d) and (e), since we do not know the addresses of
the other switches a priori, but do know the remote’s or gateway’s. Finally, if the remote is running in a local guest
VM that is not reached through the local port, the switch that is connected to the VM must allow ARP traffic based on
the remote’s IP address, since it will not know the MAC address of the local port that is sending the traffic or the MAC
address of the remote in the guest VM.

With a few notable exceptions below, in-band should work in most network setups. The following are considered
“supported” in the current implementation:

e Locally Connected. The switch and remote are on the same subnet. This uses rules (a), (b), (c), (h), and (i).

* Reached through Gateway. The switch and remote are on different subnets and must go through a gateway. This
uses rules (a), (b), (c), (h), and (i).

¢ Between Switch and Remote. This switch is between another switch and the remote, and we want to allow the
other switch’s traffic through. This uses rules (d), (e), (h), and (i). It uses (b) and (c) indirectly in order to know
the MAC address for rules (d) and (e). Note that DHCP for the other switch will not work unless an OpenFlow
controller explicitly lets this switch pass the traffic.

* Between Switch and Gateway. This switch is between another switch and the gateway, and we want to allow
the other switch’s traffic through. This uses the same rules and logic as the “Between Switch and Remote”
configuration described earlier.

* Remote on Local VM. The remote is a guest VM on the system running in-band control. This uses rules (a),
(b), (¢), (h), and ().

* Remote on Local VM with Different Networks. The remote is a guest VM on the system running in-band
control, but the local port is not used to connect to the remote. For example, an IP address is configured on
ethO of the switch. The remote’s VM is connected through ethl of the switch, but an IP address has not been
configured for that port on the switch. As such, the switch will use ethO to connect to the remote, and ethl’s
rules about the local port will not work. In the example, the switch attached to ethO would use rules (a), (b), (c),
(h), and (i) on eth0. The switch attached to eth1 would use rules (f), (g), (h), and (i).

The following are explicitly not supported by in-band control:

» Specify Remote by Name. Currently, the remote must be identified by IP address. A naive approach would be
to permit all DNS traffic. Unfortunately, this would prevent the controller from defining any policy over DNS.
Since switches that are located behind us need to connect to the remote, in-band cannot simply add a rule that

4.1. OVS 139

Open vSwitch, Release 2.9.4

allows DNS traffic from the local port. The “correct” way to support this is to parse DNS requests to allow all
traffic related to a request for the remote’s name through. Due to the potential security problems and amount of
processing, we decided to hold off for the time-being.

¢ Differing Remotes for Switches. All switches must know the L3 addresses for all the remotes that other switches
may use, since rules need to be set up to allow traffic related to those remotes through. See rules (f), (g), (h),
and (i).

* Differing Routes for Switches. In order for the switch to allow other switches to connect to a remote through a
gateway, it allows the gateway’s traffic through with rules (d) and (e). If the routes to the remote differ for the
two switches, we will not know the MAC address of the alternate gateway.

Action Reproduction

It seems likely that many controllers, at least at startup, use the OpenFlow “flow statistics” request to obtain existing
flows, then compare the flows’ actions against the actions that they expect to find. Before version 1.8.0, Open vSwitch
always returned exact, byte-for-byte copies of the actions that had been added to the flow table. The current version
of Open vSwitch does not always do this in some exceptional cases. This section lists the exceptions that controller
authors must keep in mind if they compare actual actions against desired actions in a bytewise fashion:

* Open vSwitch zeros padding bytes in action structures, regardless of their values when the flows were added.
¢ Open vSwitch “normalizes” the instructions in OpenFlow 1.1 (and later) in the following way:

— OVS sorts the instructions into the following order: Apply-Actions, Clear-Actions, Write-Actions, Write-
Metadata, Goto-Table.

— OVS drops Apply-Actions instructions that have empty action lists.
— OVS drops Write-Actions instructions that have empty action sets.

Please report other discrepancies, if you notice any, so that we can fix or document them.

Suggestions

Suggestions to improve Open vSwitch are welcome at discuss @openvswitch.org.

4.1.2 Open vSwitch Datapath Development Guide

The Open vSwitch kernel module allows flexible userspace control over flow-level packet processing on selected
network devices. It can be used to implement a plain Ethernet switch, network device bonding, VLAN processing,
network access control, flow-based network control, and so on.

The kernel module implements multiple “datapaths” (analogous to bridges), each of which can have multiple “vports”
(analogous to ports within a bridge). Each datapath also has associated with it a “flow table” that userspace populates
with “flows” that map from keys based on packet headers and metadata to sets of actions. The most common action
forwards the packet to another vport; other actions are also implemented.

When a packet arrives on a vport, the kernel module processes it by extracting its flow key and looking it up in the
flow table. If there is a matching flow, it executes the associated actions. If there is no match, it queues the packet to
userspace for processing (as part of its processing, userspace will likely set up a flow to handle further packets of the
same type entirely in-kernel).

140 Chapter 4. Deep Dive

mailto:discuss@openvswitch.org

Open vSwitch, Release 2.9.4

Flow Key Compatibility

Network protocols evolve over time. New protocols become important and existing protocols lose their prominence.
For the Open vSwitch kernel module to remain relevant, it must be possible for newer versions to parse additional
protocols as part of the flow key. It might even be desirable, someday, to drop support for parsing protocols that have
become obsolete. Therefore, the Netlink interface to Open vSwitch is designed to allow carefully written userspace
applications to work with any version of the flow key, past or future.

To support this forward and backward compatibility, whenever the kernel module passes a packet to userspace, it also
passes along the flow key that it parsed from the packet. Userspace then extracts its own notion of a flow key from the
packet and compares it against the kernel-provided version:

* If userspace’s notion of the flow key for the packet matches the kernel’s, then nothing special is necessary.

* If the kernel’s flow key includes more fields than the userspace version of the flow key, for example if the kernel
decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then
again nothing special is necessary. Userspace can still set up a flow in the usual way, as long as it uses the
kernel-provided flow key to do it.

* If the userspace flow key includes more fields than the kernel’s, for example if userspace decoded an IPv6 header
but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up
a flow in the kernel. This case is bad for performance because every packet that the kernel considers part of the
flow must go to userspace, but the forwarding behavior is correct. (If userspace can determine that the values of
the extra fields would not affect forwarding behavior, then it could set up a flow anyway.)

How flow keys evolve over time is important to making this work, so the following sections go into detail.

Flow Key Format

A flow key is passed over a Netlink socket as a sequence of Netlink attributes. Some attributes represent packet
metadata, defined as any information about a packet that cannot be extracted from the packet itself, e.g. the vport on
which the packet was received. Most attributes, however, are extracted from headers within the packet, e.g. source
and destination addresses from Ethernet, IP, or TCP headers.

The <linux/openvswitch.h> header file defines the exact format of the flow key attributes. For informal ex-
planatory purposes here, we write them as comma-separated strings, with parentheses indicating arguments and nest-
ing. For example, the following could represent a flow key corresponding to a TCP packet that arrived on vport
1:

in_port(l), eth(src=e0:91:£f5:21:d0:b2, dst=00:02:e3:0£f£:80:a4),
eth_type (0x0800), ipv4(src=172.16.0.20, dst=172.18.0.52, proto=17, tos=0,
frag=no), tcp(src=49163, dst=80)

Often we ellipsize arguments not important to the discussion, e.g.:

in_port(l), eth(...), eth_type(0x0800), ipv4(...), tcp(...)

Wildcarded Flow Key Format

A wildcarded flow is described with two sequences of Netlink attributes passed over the Netlink socket. A flow key,
exactly as described above, and an optional corresponding flow mask.

A wildcarded flow can represent a group of exact match flows. Each 1 bit in the mask specifies an exact match with
the corresponding bit in the flow key. A O bit specifies a don’t care bit, which will match either a 1 or 0 bit of an
incoming packet. Using a wildcarded flow can improve the flow set up rate by reducing the number of new flows that
need to be processed by the user space program.

4.1. OVS 141

Open vSwitch, Release 2.9.4

Support for the mask Netlink attribute is optional for both the kernel and user space program. The kernel can ignore
the mask attribute, installing an exact match flow, or reduce the number of don’t care bits in the kernel to less than what
was specified by the user space program. In this case, variations in bits that the kernel does not implement will simply
result in additional flow setups. The kernel module will also work with user space programs that neither support nor
supply flow mask attributes.

Since the kernel may ignore or modify wildcard bits, it can be difficult for the userspace program to know exactly what
matches are installed. There are two possible approaches: reactively install flows as they miss the kernel flow table
(and therefore not attempt to determine wildcard changes at all) or use the kernel’s response messages to determine
the installed wildcards.

When interacting with userspace, the kernel should maintain the match portion of the key exactly as originally installed.
This will provides a handle to identify the flow for all future operations. However, when reporting the mask of an
installed flow, the mask should include any restrictions imposed by the kernel.

The behavior when using overlapping wildcarded flows is undefined. It is the responsibility of the user space program
to ensure that any incoming packet can match at most one flow, wildcarded or not. The current implementation
performs best-effort detection of overlapping wildcarded flows and may reject some but not all of them. However, this
behavior may change in future versions.

Unique Flow Identifiers

An alternative to using the original match portion of a key as the handle for flow identification is a unique flow
identifier, or “UFID”. UFIDs are optional for both the kernel and user space program.

User space programs that support UFID are expected to provide it during flow setup in addition to the flow, then refer
to the flow using the UFID for all future operations. The kernel is not required to index flows by the original flow key
if a UFID is specified.

Basic Rule for Evolving Flow Keys

Some care is needed to really maintain forward and backward compatibility for applications that follow the rules listed
under “Flow key compatibility” above.

The basic rule is obvious:

New network protocol support must only supplement existing flow key attributes. It must not change the
meaning of already defined flow key attributes.

This rule does have less-obvious consequences so it is worth working through a few examples. Suppose, for exam-
ple, that the kernel module did not already implement VLAN parsing. Instead, it just interpreted the 802.1Q TPID
(0x8100) as the Ethertype then stopped parsing the packet. The flow key for any packet with an 8§02.1Q header would
look essentially like this, ignoring metadata:

eth(...), eth_type(0x8100)

Naively, to add VLAN support, it makes sense to add a new “vlan” flow key attribute to contain the VLAN tag, then
continue to decode the encapsulated headers beyond the VLAN tag using the existing field definitions. With this
change, a TCP packet in VLAN 10 would have a flow key much like this:

eth(...), vlan(vid=10, pcp=0), eth_type(0x0800), ip(proto=6, ...), tcp(...)

But this change would negatively affect a userspace application that has not been updated to understand the new “vlan”
flow key attribute. The application could, following the flow compatibility rules above, ignore the “vlan” attribute that
it does not understand and therefore assume that the flow contained IP packets. This is a bad assumption (the flow
only contains IP packets if one parses and skips over the 802.1Q header) and it could cause the application’s behavior
to change across kernel versions even though it follows the compatibility rules.

142 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

The solution is to use a set of nested attributes. This is, for example, why 802.1Q support uses nested attributes. A
TCP packet in VLAN 10 is actually expressed as:

eth(...), eth_type(0x8100), vlan(vid=10, pcp=0), encap (eth_type (0x0800),
ip(proto=6, ...), tcp(...)))

Notice how the eth_type, ip, and tcp flow key attributes are nested inside the encap attribute. Thus, an appli-
cation that does not understand the v1an key will not see either of those attributes and therefore will not misinterpret
them. (Also, the outer eth_type is still 0x8100, not changed to 0x0800)

Handling Malformed Packets

Don’t drop packets in the kernel for malformed protocol headers, bad checksums, etc. This would prevent userspace
from implementing a simple Ethernet switch that forwards every packet.

Instead, in such a case, include an attribute with “empty”” content. It doesn’t matter if the empty content could be valid
protocol values, as long as those values are rarely seen in practice, because userspace can always forward all packets
with those values to userspace and handle them individually.

For example, consider a packet that contains an IP header that indicates protocol 6 for TCP, but which is truncated just
after the IP header, so that the TCP header is missing. The flow key for this packet would include a tcp attribute with
all-zero src and dst, like this:

eth(...), eth_type(0x0800), ip(proto=6, ...), tcp(src=0, dst=0)

As another example, consider a packet with an Ethernet type of 0x8100, indicating that a VLAN TCI should follow,
but which is truncated just after the Ethernet type. The flow key for this packet would include an all-zero-bits vlan and
an empty encap attribute, like this:

eth(...), eth_type(0x8100), vlan(0), encap/()

Unlike a TCP packet with source and destination ports 0, an all-zero-bits VLAN TCI is not that rare, so the CFI bit
(aka VLAN_TAG_PRESENT inside the kernel) is ordinarily set in a vlan attribute expressly to allow this situation to
be distinguished. Thus, the flow key in this second example unambiguously indicates a missing or malformed VLAN
TCL

Other Rules

The other rules for flow keys are much less subtle:
* Duplicate attributes are not allowed at a given nesting level.
* Ordering of attributes is not significant.

* When the kernel sends a given flow key to userspace, it always composes it the same way. This allows userspace
to hash and compare entire flow keys that it may not be able to fully interpret.

Coding Rules

Implement the headers and codes for compatibility with older kernel in 1inux/compat/ directory. All public
functions should be exported using EXPORT_SYMBOL macro. Public function replacing the same-named kernel
function should be prefixed with rpl_. Otherwise, the function should be prefixed with ovs_. For special case
when it is not possible to follow this rule (e.g., the pskb_expand_head () function), the function name must
be added to linux/compat/build-aux/export—-check-whitelist, otherwise, the compilation check
check-export-symbol will fail.

4.1. OVS 143

Open vSwitch, Release 2.9.4

4.1.3 Integration Guide for Centralized Control

This document describes how to integrate Open vSwitch onto a new platform to expose the state of the switch and
attached devices for centralized control. (If you are looking to port the switching components of Open vSwitch to a
new platform, refer to Porting Open vSwitch to New Software or Hardware) The focus of this guide is on hypervisors,
but many of the interfaces are useful for hardware switches, as well. The XenServer integration is the most mature
implementation, so most of the examples are drawn from it.

The externally visible interface to this integration is platform-agnostic. We encourage anyone who integrates Open
vSwitch to use the same interface, because keeping a uniform interface means that controllers require less customiza-
tion for individual platforms (and perhaps no customization at all).

Integration centers around the Open vSwitch database and mostly involves the external_ids columns in several of
the tables. These columns are not interpreted by Open vSwitch itself. Instead, they provide information to a controller
that permits it to associate a database record with a more meaningful entity. In contrast, the ot her_config column
is used to configure behavior of the switch. The main job of the integrator, then, is to ensure that these values are
correctly populated and maintained.

An integrator sets the columns in the database by talking to the ovsdb-server daemon. A few of the columns can
be set during startup by calling the ovs-ctl tool from inside the startup scripts. The xenserver/etc_init.
d_openvswitch script provides examples of its use, and the ovs-ctl(8) manpage contains complete docu-
mentation. At runtime, ovs-vsctl can be be used to set columns in the database. The script xenserver/
etc_xensource_scripts_vif contains examples of its use, and ovs-vsctl(8) manpage contains complete doc-
umentation.

Python and C bindings to the database are provided if deeper integration with a program are needed. The XenServer
ovs-xapi-sync daemon (xenserver/usr_share_openvswitch_scripts_ovs—xapi-sync) provides an
example of using the Python bindings. More information on the python bindings is available at python/ovs/db/
idl.py. Information on the C bindings is available at 1ib/ovsdb-idl.h.

The following diagram shows how integration scripts fit into the Open vSwitch architecture:

| Integration scripts |
| (ex: ovs—xapi-sync) |

Diagram
e +
| Controller Cluster +
e +
\
\
B ettt et +
\ \ \
| o o + |
\ \ | |
| e + e + |
| | ovsdb-server |- | ovs—-vswitchd | |
| F——— + o + |
\ \ \
[+ \
\ \
\ |
\ |
\ \

(continues on next page)

144 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

(continued from previous page)

A description of the most relevant fields for integration follows. By setting these values, controllers are able to
understand the network and manage it more dynamically and precisely. For more details about the database and each
individual column, please refer to the ovs-vswitchd.conf.db(5) manpage.

Open_vSwitch table

The Open_vSwitch table describes the switch as a whole. The system_type and system_version columns
identify the platform to the controller. The external_ids:system—id key uniquely identifies the physical host.
In XenServer, the system-id will likely be the same as the UUID returned by xe host-1ist. This key allows
controllers to distinguish between multiple hypervisors.

Most of this configuration can be done with the ovs-ctl command at startup. For example:

$ ovs—ctl —--system-type="XenServer" --system-version="6.0.0-50762p" \
—-system-id="${UUID}" "S${other_options}" start

Alternatively, the ovs-vsctl command may be used to set a particular value at runtime. For example:

$ ovs-vsctl set open_vswitch . external-ids:system-id='"${UUID}"'

The other_config:enable-statistics key may be set to true to have OVS populate the database with
statistics (e.g., number of CPUs, memory, system load) for the controller’s use.

Bridge table

The Bridge table describes individual bridges within an Open vSwitch instance. The external-ids:bridge-id
key uniquely identifies a particular bridge. In XenServer, this will likely be the same as the UUID returned by xe
network—-11st for that particular bridge.

For example, to set the identifier for bridge “br0”, the following command can be used:

’$ ovs-vsctl set Bridge br0 external-ids:bridge-id='"${UUID}"'

The MAC address of the bridge may be manually configured by setting it with the other_config:hwaddr key.
For example:

’$ ovs-vsctl set Bridge br0 other_config:hwaddr="12:34:56:78:90:ab" ‘

Interface table

The Interface table describes an interface under the control of Open vSwitch. The external_ids column contains
keys that are used to provide additional information about the interface:

attached-mac

This field contains the MAC address of the device attached to the interface. On a hypervisor, this is
the MAC address of the interface as seen inside a VM. It does not necessarily correlate to the host-
side MAC address. For example, on XenServer, the MAC address on a VIF in the hypervisor is always
FE:FF:FF:FF:FF:FF, but inside the VM a normal MAC address is seen.

iface-id

4.1. OVS 145

Open vSwitch, Release 2.9.4

This field uniquely identifies the interface. In hypervisors, this allows the controller to follow VM network
interfaces as VMs migrate. A well-chosen identifier should also allow an administrator or a controller to
associate the interface with the corresponding object in the VM management system. For example, the
Open vSwitch integration with XenServer by default uses the XenServer assigned UUID for a VIF record
as the iface-id.

iface-status

In a hypervisor, there are situations where there are multiple interface choices for a single virtual ethernet
interface inside a VM. Valid values are “active” and “inactive”. A complete description is available in the
ovs-vswitchd.conf.db(5) manpage.

vm-id
This field uniquely identifies the VM to which this interface belongs. A single VM may have multiple
interfaces attached to it.

As in the previous tables, the ovs-vsctl command may be used to configure the values. For example, to set the
iface-id on eth0, the following command can be used:

$ ovs-vsctl set Interface ethO external-ids:iface-id=""${UUID}"'

HA for OVN DB servers using pacemaker

The ovsdb servers can work in either active or backup mode. In backup mode, db server will be connected to an active
server and replicate the active servers contents. At all times, the data can be transacted only from the active server.
When the active server dies for some reason, entire OVN operations will be stalled.

Pacemaker is a cluster resource manager which can manage a defined set of resource across a set of clustered nodes.
Pacemaker manages the resource with the help of the resource agents. One among the resource agent is OCF

OCEF is nothing but a shell script which accepts a set of actions and returns an appropriate status code.

With the help of the OCF resource agent ovn/utilities/ovndb-servers.ocf, one can defined a resource for the pacemaker
such that pacemaker will always maintain one running active server at any time.

After creating a pacemaker cluster, use the following commands to create one active and multiple backup servers for
OVN databases:

$ pcs resource create ovndb_servers ocf:ovn:ovndb-servers \
master_ip=x.x.x.x \
ovn_ctl=<path of the ovn-ctl script> \
op monitor interval="10s" \
op monitor role=Master interval="15s"
$ pcs resource master ovndb_servers-master ovndb_servers \
meta notify="true"

The master_ip and ovn_ctl are the parameters that will be used by the OCF script. ovn_ctl is optional, if not given,
it assumes a default value of /usr/share/openvswitch/scripts/ovn-ctl. master_ip is the IP address on which the active
database server is expected to be listening, the slave node uses it to connect to the master node. You can add the optional
parameters ‘nb_master_port’, ‘nb_master_protocol’, ‘sb_master_port’, ‘sb_master_protocol’ to set the protocol and
port.

Whenever the active server dies, pacemaker is responsible to promote one of the backup servers to be active. Both
ovn-controller and ovn-northd needs the ip-address at which the active server is listening. With pacemaker changing
the node at which the active server is run, it is not efficient to instruct all the ovn-controllers and the ovn-northd to
listen to the latest active server’s ip-address.

This problem can be solved by two ways:

146 Chapter 4. Deep Dive

http://clusterlabs.org/pacemaker.html
http://www.linux-ha.org/wiki/OCF_Resource_Agents

Open vSwitch, Release 2.9.4

1. By using a native ocf resource agent ocf : heartbeat : IPaddr2. The IPAddr2 resource agent is just a resource
with an ip-address. When we colocate this resource with the active server, pacemaker will enable the active server to
be connected with a single ip-address all the time. This is the ip-address that needs to be given as the parameter while
creating the ovndb_servers resource.

Use the following command to create the IPAddr2 resource and colocate it with the active server:

$ pcs resource create VirtualIP ocf:heartbeat:IPaddr2 ip=x.x.x.x \
op monitor interval=30s

$ pcs constraint order promote ovndb_servers-master then VirtuallIP

$ pcs constraint colocation add VirtualIP with master ovndb_servers—-master \
score=INFINITY

2. Using load balancer vip ip as a master_ip. In order to use this feature, one needs to use listen_on_master_ip_only
to no. Current code for load balancer have been tested to work with tcp protocol and needs to be tested/enchanced
for ssl. Using load balancer, standby nodes will not listen on nb and sb db ports so that load balancer will always
communicate to the active node and all the traffic will be sent to active node only. Standby will continue to sync using
LB VIP IP in this case.

Use the following command to create pcs resource using LB VIP IP:

$ pcs resource create ovndb_servers ocf:ovn:ovndb-servers \
master_ip="<load_balance_vip_ip>" \
listen_on_master_ip_only="no" \
ovn_ctl=<path of the ovn-ctl script> \
op monitor interval="10s" \
op monitor role=Master interval="15s"
$ pcs resource master ovndb_servers-master ovndb_servers \
meta notify="true"

4.1.4 Porting Open vSwitch to New Software or Hardware
Open vSwitch (OVS) is intended to be easily ported to new software and hardware platforms. This document describes

the types of changes that are most likely to be necessary in porting OVS to Unix-like platforms. (Porting OVS to other
kinds of platforms is likely to be more difficult.)

Vocabulary

For historical reasons, different words are used for essentially the same concept in different areas of the Open vSwitch
source tree. Here is a concordance, indexed by the area of the source tree:

datapath/ vport -
vswitchd/ iface port
ofproto/ port bundle
ofproto/bond.c slave bond
lib/lacp.c slave lacp
lib/netdev.c netdev ——
database Interface Port

Open vSwitch Architectural Overview

The following diagram shows the very high-level architecture of Open vSwitch from a porter’s perspective.

4.1. OVS 147

Open vSwitch, Release 2.9.4

o +

| ovs—-vswitchd | <——>ovsdb-server
e +

| ofproto | <-—>OpenFlow controllers
o -t +

| netdev | | ofproto]

- + |provider|

| netdev | +-———————- +

|provider|

o +

Some of the components are generic. Modulo bugs or inadequacies, these components should not need to be modified
as part of a port:

ovs-vswitchd The main Open vSwitch userspace program, in vswitchd/. It reads the desired Open vSwitch configu-
ration from the ovsdb-server program over an IPC channel and passes this configuration down to the “ofproto”
library. It also passes certain status and statistical information from ofproto back into the database.

ofproto The Open vSwitch library, in ofproto/, that implements an OpenFlow switch. It talks to OpenFlow controllers
over the network and to switch hardware or software through an “ofproto provider”, explained further below.

netdev The Open vSwitch library, in lib/netdev.c, that abstracts interacting with network devices, that is, Ethernet
interfaces. The netdev library is a thin layer over “netdev provider” code, explained further below.

The other components may need attention during a port. You will almost certainly have to implement a “netdev
provider”. Depending on the type of port you are doing and the desired performance, you may also have to implement
an “ofproto provider” or a lower-level component called a “dpif” provider.

The following sections talk about these components in more detail.

Writing a netdev Provider

A “netdev provider” implements an operating system and hardware specific interface to “network devices”, e.g. ethO
on Linux. Open vSwitch must be able to open each port on a switch as a netdev, so you will need to implement a
“netdev provider” that works with your switch hardware and software.

struct netdev_class,inlib/netdev-provider.h, defines the interfaces required to implement a netdev.
That structure contains many function pointers, each of which has a comment that is meant to describe its behavior in
detail. If the requirements are unclear, report this as a bug.

The netdev interface can be divided into a few rough categories:

* Functions required to properly implement OpenFlow features. For example, OpenFlow requires the ability to
report the Ethernet hardware address of a port. These functions must be implemented for minimally correct
operation.

* Functions required to implement optional Open vSwitch features. For example, the Open vSwitch support for
in-band control requires netdev support for inspecting the TCP/IP stack’s ARP table. These functions must be
implemented if the corresponding OVS features are to work, but may be omitted initially.

* Functions needed in some implementations but not in others. For example, most kinds of ports (see below) do
not need functionality to receive packets from a network device.

The existing netdev implementations may serve as useful examples during a port:

* lib/netdev-linux.c implements netdev functionality for Linux network devices, using Linux kernel calls. It may
be a good place to start for full-featured netdev implementations.

¢ lib/netdev-vport.c provides support for “virtual ports” implemented by the Open vSwitch datapath module for
the Linux kernel. This may serve as a model for minimal netdev implementations.

148 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

* lib/netdev-dummy.c is a fake netdev implementation useful only for testing.

Porting Strategies

After a netdev provider has been implemented for a system’s network devices, you may choose among three basic
porting strategies.

The lowest-effort strategy is to use the “userspace switch” implementation built into Open vSwitch. This ought to
work, without writing any more code, as long as the netdev provider that you implemented supports receiving packets.
It yields poor performance, however, because every packet passes through the ovs-vswitchd process. Refer to Open
vSwitch without Kernel Support for instructions on how to configure a userspace switch.

If the userspace switch is not the right choice for your port, then you will have to write more code. You may implement
either an “ofproto provider” or a “dpif provider”. Which you should choose depends on a few different factors:

* Only an ofproto provider can take full advantage of hardware with built-in support for wildcards (e.g. an ACL
table or a TCAM).

* A dpif provider can take advantage of the Open vSwitch built-in implementations of bonding, LACP, 802.1ag,
802.1Q VLANS, and other features. An ofproto provider has to provide its own implementations, if the hardware
can support them at all.

* A dpif provider is usually easier to implement, but most appropriate for software switching. It “explodes”
wildcard rules into exact-match entries (with an optional wildcard mask). This allows fast hash lookups in
software, but makes inefficient use of TCAMs in hardware that support wildcarding.

The following sections describe how to implement each kind of port.

ofproto Providers

An “ofproto provider” is what ofproto uses to directly monitor and control an OpenFlow-capable switch. struct
ofproto_class,inofproto/ofproto-provider.h, defines the interfaces to implement an ofproto provider
for new hardware or software. That structure contains many function pointers, each of which has a comment that is
meant to describe its behavior in detail. If the requirements are unclear, report this as a bug.

The ofproto provider interface is preliminary. Let us know if it seems unsuitable for your purpose. We will try to
improve it.

Writing a dpif Provider

Open vSwitch has a built-in ofproto provider named “ofproto-dpif”, which is built on top of a library for manipulating
datapaths, called “dpif”. A “datapath” is a simple flow table, one that is only required to support exact-match flows,
that is, flows without wildcards. When a packet arrives on a network device, the datapath looks for it in this table.
If there is a match, then it performs the associated actions. If there is no match, the datapath passes the packet up to
ofproto-dpif, which maintains the full OpenFlow flow table. If the packet matches in this flow table, then ofproto-dpif
executes its actions and inserts a new entry into the dpif flow table. (Otherwise, ofproto-dpif passes the packet up to
ofproto to send the packet to the OpenFlow controller, if one is configured.)

When calculating the dpif flow, ofproto-dpif generates an exact-match flow that describes the missed packet. It makes
an effort to figure out what fields can be wildcarded based on the switch’s configuration and OpenFlow flow table. The
dpif is free to ignore the suggested wildcards and only support the exact-match entry. However, if the dpif supports
wildcarding, then it can use the masks to match multiple flows with fewer entries and potentially significantly reduce
the number of flow misses handled by ofproto-dpif.

The “dpif” library in turn delegates much of its functionality to a “dpif provider”. The following diagram shows how
dpif providers fit into the Open vSwitch architecture:

4.1. OVS 149

Open vSwitch, Release 2.9.4

Architecure
| o +
| | ovs—-vswitchd | <——>ovsdb-server
| e +
| | ofproto | <-=>OpenFlow controllers
\ fom— -t + _
| | netdev | |ofproto—| |
userspace | t———— + | dpif | |
\ | netdev | +-———————- + \
| |provider| | dpif | |
\ -t +
| | [dpif | | implementation of
| [|provider | | ofproto provider
l_ I Sttt Bl Bt 5 \
I [\
_ ot Rl Bl Bt \
\ \ |datapath| \
kernel | \ to——— + |
\ \ \
l_ 4+ [+
[
physical
NIC

struct dpif_class,in lib/dpif-provider.h, defines the interfaces required to implement a dpif provider for
new hardware or software. That structure contains many function pointers, each of which has a comment that is meant
to describe its behavior in detail. If the requirements are unclear, report this as a bug.

There are two existing dpif implementations that may serve as useful examples during a port:

* lib/dpif-netlink.c is a Linux-specific dpif implementation that talks to an Open vSwitch-specific kernel module
(whose sources are in the “datapath” directory). The kernel module performs all of the switching work, passing
packets that do not match any flow table entry up to userspace. This dpif implementation is essentially a wrapper
around calls into the kernel module.

* lib/dpif-netdev.c is a generic dpif implementation that performs all switching internally. This is how the Open
vSwitch userspace switch is implemented.

Miscellaneous Notes

Open vSwitch source code uses uint16_t,uint32_t,and uint 64_t as fixed-width types in host byte order, and
ovs_belb6, ovs_be32, and ovs_be64 as fixed-width types in network byte order. Each of the latter is equivalent
to the one of the former, but the difference in name makes the intended use obvious.

The default “fail-mode” for Open vSwitch bridges is “standalone”, meaning that, when the OpenFlow controllers can-
not be contacted, Open vSwitch acts as a regular MAC-learning switch. This works well in virtualization environments
where there is normally just one uplink (either a single physical interface or a bond). In a more general environment,
it can create loops. So, if you are porting to a general-purpose switch platform, you should consider changing the
default “fail-mode” to “secure”, which does not behave this way. See documentation for the “fail-mode” column in
the Bridge table in ovs-vswitchd.conf.db(5) for more information.

lib/entropy.c assumes that it can obtain high-quality random number seeds at startup by reading from
/dev/urandom. You will need to modify it if this is not true on your platform.

vswitchd/system-stats.c only knows how to obtain some statistics on Linux. Optionally you may implement
them for your platform as well.

150 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

Why OVS Does Not Support Hybrid Providers

The porting strategies section above describes the “ofproto provider” and “dpif provider” porting strategies. Only an
ofproto provider can take advantage of hardware TCAM support, and only a dpif provider can take advantage of the
OVS built-in implementations of various features. It is therefore tempting to suggest a hybrid approach that shares the
advantages of both strategies.

However, Open vSwitch does not support a hybrid approach. Doing so may be possible, with a significant amount of
extra development work, but it does not yet seem worthwhile, for the reasons explained below.

First, user surprise is likely when a switch supports a feature only with a high performance penalty. For example,
one user questioned why adding a particular OpenFlow action to a flow caused a 1,058x slowdown on a hardware
OpenFlow implementation'. The action required the flow to be implemented in software.

Given that implementing a flow in software on the slow management CPU of a hardware switch causes a major
slowdown, software-implemented flows would only make sense for very low-volume traffic. But many of the features
built into the OVS software switch implementation would need to apply to every flow to be useful. There is no value,
for example, in applying bonding or 802.1Q VLAN support only to low-volume traffic.

Besides supporting features of OpenFlow actions, a hybrid approach could also support forms of matching not sup-
ported by particular switching hardware, by sending all packets that might match a rule to software. But again this can
cause an unacceptable slowdown by forcing bulk traffic through software in the hardware switch’s slow management
CPU. Consider, for example, a hardware switch that can match on the IPv6 Ethernet type but not on fields in I[Pv6 head-
ers. An OpenFlow table that matched on the IPv6 Ethernet type would perform well, but adding a rule that matched
only UDPv6 would force every IPv6 packet to software, slowing down not just UDPv6 but all IPv6 processing.

Questions

Direct porting questions to dev@openvswitch.org. We will try to use questions to improve this porting guide.

4.1.5 OpenFlow Support in Open vSwitch

Open vSwitch support for OpenFlow 1.1 and beyond is a work in progress. This file describes the work still to be
done.

The Plan

OpenFlow version support is not a build-time option. A single build of Open vSwitch must be able to handle all
supported versions of OpenFlow. Ideally, even at runtime it should be able to support all protocol versions at the same
time on different OpenFlow bridges (and perhaps even on the same bridge).

At the same time, it would be a shame to litter the core of the OVS code with lots of ugly code concerned with the
details of various OpenFlow protocol versions.

The primary approach to compatibility is to abstract most of the details of the differences from the core code, by
adding a protocol layer that translates between OF1.x and a slightly higher-level abstract representation. The core of
this approach is the many struct ofputil_« structuresin include/openvswitch/ofp-util.h.

As a consequence of this approach, OVS cannot use OpenFlow protocol definitions that closely resemble those
in the OpenFlow specification, because openflow.h in different versions of the OpenFlow specification defines
the same identifier with different values. Instead, openflow—common .h contains definitions that are common to
all the specifications and separate protocol version-specific headers contain protocol-specific definitions renamed so
as not to conflict, e.g. OFPAT10_ENQUEUE and OFPAT11_ENQUEUE for the OpenFlow 1.0 and 1.1 values for

! Aaron Rosen, “Modify packet fields extremely slow”, openflow-discuss mailing list, June 26, 2011, archived at https://mailman.stanford.edu/
pipermail/openflow-discuss/2011-June/002386.html.

4.1. OVS 151

mailto:dev@openvswitch.org
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-June/002386.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-June/002386.html

Open vSwitch, Release 2.9.4

OFPAT_ENQUEUE. Generally, in cases of conflict, the protocol layer will define a more abstract OFPUTIL_x or
struct ofputil_ *.

Here are the current approaches in a few tricky areas:
 Port numbering.

OpenFlow 1.0 has 16-bit port numbers and later OpenFlow versions have 32-bit port numbers. For now, OVS
support for later protocol versions requires all port numbers to fall into the 16-bit range, translating the reserved
OFPP__x port numbers.

e Actions.

OpenFlow 1.0 and later versions have very different ideas of actions. OVS reconciles by translating all the
versions’ actions (and instructions) to and from a common internal representation.

OpenFlow 1.1

OpenFlow 1.1 support is complete.

OpenFlow 1.2

OpenFlow 1.2 support is complete.

OpenFlow 1.3

OpenFlow 1.3 support requires OpenFlow 1.2 as a prerequisite, plus the following additional work. (This is based on
the change log at the end of the OF1.3 spec, reusing most of the section titles directly. I didn’t compare the specs
carefully yet.)

* Add support for multipart requests.
Currently we always report OFPBRC_MULTIPART_BUFFER_OVERFLOW.
(optional for OF1.3+)

* [Pv6 extension header handling support.

Fully implementing this requires kernel support. This likely will take some careful and probably time-
consuming design work. The actual coding, once that is all done, is probably 2 or 3 days work.

(optional for OF1.3+)
* Auxiliary connections.

An implementation in generic code might be a week’s worth of work. The value of an implementation in
generic code is questionable, though, since much of the benefit of axuiliary connections is supposed to be to
take advantage of hardware support. (We could make the kernel module somehow send packets across the
auxiliary connections directly, for some kind of “hardware” support, if we judged it useful enough.)

(optional for OF1.3+)
* Provider Backbone Bridge tagging.
I don’t plan to implement this (but we’d accept an implementation).

(optional for OF1.3+)

152 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

* On-demand flow counters.
I think this might be a real optimization in some cases for the software switch.

(optional for OF1.3+)

OpenFlow 1.4 & ONF Extensions for 1.3.X Pack1

The following features are both defined as a set of ONF Extensions for 1.3 and integrated in 1.4.

When defined as an ONF Extension for 1.3, the feature is using the Experimenter mechanism with the ONF Experi-
menter ID.

When defined integrated in 1.4, the feature use the standard OpenFlow structures (for example defined in openflow-
1.4.h).

The two definitions for each feature are independent and can exist in parallel in OVS.
 Flow entry notifications
This seems to be modelled after OVS’s NXST_FLOW_MONITOR.
(EXT-187) (optional for OF1.4+)
* Role Status
Already implemented as a 1.4 feature.
(EXT-191)
(required for OF1.4+)
 Flow entry eviction

OVS has flow eviction functionality. table_mod OFPTC_EVICTION, flow_mod 'importance', and
table_desc ofp_table_mod_prop_eviction need to be implemented.

(EXT-192-¢)

(optional for OF1.4+)
* Vacancy events

(EXT-192-v)

(optional for OF1.4+)
* Bundle

Transactional modification. OpenFlow 1.4 requires to support £f1ow_mods and port_mods in a bundle if
bundle is supported. (Not related to OVS’s ‘ofbundle’ stuff.)

Implemented as an OpenFlow 1.4 feature. Only flow_mods and port_mods are supported in a bundle. If the
bundle includes port mods, it may not specify the OFPBF_ATOMIC flag. Nevertheless, port mods and flow
mods in a bundle are always applied in order and consecutive flow mods between port mods are made available
to lookups atomically.

(EXT-230)
(optional for OF1.4+)
* Table synchronisation
Probably not so useful to the software switch.

(EXT-232)

4.1. OVS 153

Open vSwitch, Release 2.9.4

(optional for OF1.4+)
* Group and Meter change notifications
(EXT-235)
(optional for OF1.4+)
* Bad flow entry priority error
Probably not so useful to the software switch.
(EXT-236)
(optional for OF1.4+)
 Set async config error
(EXT-237)
(optional for OF1.4+)
e PBB UCA header field
See comment on Provider Backbone Bridge in section about OpenFlow 1.3.
(EXT-256)
(optional for OF1.4+)
* Multipart timeout error
(EXT-264)
(required for OF1.4+)

OpenFlow 1.4 only

Those features are those only available in OpenFlow 1.4, other OpenFlow 1.4 features are listed in the previous section.
* More extensible wire protocol
Many on-wire structures got TLVs.
All required features are now supported. Remaining optional: table desc, table-status
(EXT-262)
(required for OF1.4+)
 Optical port properties
(EXT-154)
(optional for OF1.4+)

OpenFlow 1.5 & ONF Extensions for 1.3.X Pack2
The following features are both defined as a set of ONF Extensions for 1.3 and integrated in 1.5. Note that this list is
not definitive as those are not yet published.

When defined as an ONF Extension for 1.3, the feature is using the Experimenter mechanism with the ONF Experi-
menter ID. When defined integrated in 1.5, the feature use the standard OpenFlow structures (for example defined in
openflow-1.5.h).

The two definitions for each feature are independent and can exist in parallel in OVS.

154 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

¢ Time scheduled bundles
(EXT-340)
(optional for OF1.5+)

OpenFlow 1.5 only
Those features are those only available in OpenFlow 1.5, other OpenFlow 1.5 features are listed in the previous section.
Note that this list is not definitive as OpenFlow 1.5 is not yet published.
» Egress Tables
(EXT-306)
(optional for OF1.5+)
» Packet Type aware pipeline
Prototype for OVS was done during specification.
(EXT-112)
(optional for OF1.5+)
 Extensible Flow Entry Statistics
(EXT-334)
(required for OF1.5+)
* Flow Entry Statistics Trigger
(EXT-335)
(optional for OF1.5+)
* Controller connection status
Prototype for OVS was done during specification.
(EXT-454)
(optional for OF1.5+)
* Meter action
(EXT-379)
(required for OF1.5+ if metering is supported)
* Port properties for pipeline fields
Prototype for OVS was done during specification.
(EXT-388)
(optional for OF1.5+)
* Port property for recirculation
Prototype for OVS was done during specification.
(EXT-399)
(optional for OF1.5+)

4.1. OVS 155

Open vSwitch, Release 2.9.4

General

* ovs-ofctl(8) often lists as Nicira extensions features that later OpenFlow versions support in standard ways.

How to contribute
If you plan to contribute code for a feature, please let everyone know on ovs-dev before you start work. This will help
avoid duplicating work.
Consider the following:
* Testing.
Please test your code.
e Unit tests.
Consider writing some. The tests directory has many examples that you can use as a starting point.
* ovs-ofctl.
If you add a feature that is useful for some ovs-ofctl command then you should add support for it there.
* Documentation.

If you add a user-visible feature, then you should document it in the appropriate manpage and mention it in
NEWS as well.

Refer to Contributing to Open vSwitch for more information.

4.1.6 Bonding

Bonding allows two or more interfaces (the “slaves”) to share network traffic. From a high-level point of view, bonded
interfaces act like a single port, but they have the bandwidth of multiple network devices, e.g. two 1 GB physical
interfaces act like a single 2 GB interface. Bonds also increase robustness: the bonded port does not go down as long
as at least one of its slaves is up.

In vswitchd, a bond always has at least two slaves (and may have more). If a configuration error, etc. would cause a
bond to have only one slave, the port becomes an ordinary port, not a bonded port, and none of the special features of
bonded ports described in this section apply.

There are many forms of bonding of which ovs-vswitchd implements only a few. The most complex bond ovs-vswitchd
implements is called “source load balancing” or SLB bonding. SLB bonding divides traffic among the slaves based on
the Ethernet source address. This is useful only if the traffic over the bond has multiple Ethernet source addresses, for
example if network traffic from multiple VMs are multiplexed over the bond.

Note: Most of the ovs-vswitchd implementation is in vswitchd/bridge. c, so code references below should be
assumed to refer to that file except as otherwise specified.

Enabling and Disabling Slaves

When a bond is created, a slave is initially enabled or disabled based on whether carrier is detected on the NIC (see
iface_create ()). After that, a slave is disabled if its carrier goes down for a period of time longer than the down-
delay, and it is enabled if carrier comes up for longer than the updelay (see bond_1link_status_update ()).
There is one exception where the updelay is skipped: if no slaves at all are currently enabled, then the first slave on
which carrier comes up is enabled immediately.

156 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

The updelay should be set to a time longer than the STP forwarding delay of the physical switch to which the bond
port is connected (if STP is enabled on that switch). Otherwise, the slave will be enabled, and load may be shifted to
it, before the physical switch starts forwarding packets on that port, which can cause some data to be “blackholed” for
a time. The exception for a single enabled slave does not cause any problem in this regard because when no slaves are
enabled all output packets are blackholed anyway.

When a slave becomes disabled, the vswitch immediately chooses a new output port for traffic that was destined for
that slave (see bond_enable_slave ()). It also sends a “gratuitous learning packet”, specifically a RARP, on the
bond port (on the newly chosen slave) for each MAC address that the vswitch has learned on a port other than the bond
(see bundle_send_learning_packets ()), to teach the physical switch that the new slave should be used in
place of the one that is now disabled. (This behavior probably makes sense only for a vswitch that has only one port
(the bond) connected to a physical switch; vswitchd should probably provide a way to disable or configure it in other
scenarios.)

Bond Packet Input

Bonding accepts unicast packets on any bond slave. This can occasionally cause packet duplication for the first few
packets sent to a given MAC, if the physical switch attached to the bond is flooding packets to that MAC because it
has not yet learned the correct slave for that MAC.

Bonding only accepts multicast (and broadcast) packets on a single bond slave (the “active slave™) at any given time.
Multicast packets received on other slaves are dropped. Otherwise, every multicast packet would be duplicated, once
for every bond slave, because the physical switch attached to the bond will flood those packets.

Bonding also drops received packets when the vswitch has learned that the packet’s MAC is on a port other than the
bond port itself. This is because it is likely that the vswitch itself sent the packet out the bond port on a different
slave and is now receiving the packet back. This occurs when the packet is multicast or the physical switch has not
yet learned the MAC and is flooding it. However, the vswitch makes an exception to this rule for broadcast ARP
replies, which indicate that the MAC has moved to another switch, probably due to VM migration. (ARP replies are
normally unicast, so this exception does not match normal ARP replies. It will match the learning packets sent on
bond fail-over.)

The active slave is simply the first slave to be enabled after the bond 1is created (see
bond_choose_active_slave ()). If the active slave is disabled, then a new active slave is chosen among the
slaves that remain active. Currently due to the way that configuration works, this tends to be the remaining slave
whose interface name is first alphabetically, but this is by no means guaranteed.

Bond Packet Output

When a packet is sent out a bond port, the bond slave actually used is selected based on the packet’s source MAC and
VLAN tag (see bond_choose_output_slave ()). In particular, the source MAC and VLAN tag are hashed into
one of 256 values, and that value is looked up in a hash table (the “bond hash”) kept in the bond_hash member of
struct port. The hash table entry identifies a bond slave. If no bond slave has yet been chosen for that hash table entry,
vswitchd chooses one arbitrarily.

Every 10 seconds, vswitchd rebalances the bond slaves (see bond_rebalance ()). To rebalance, vswitchd exam-
ines the statistics for the number of bytes transmitted by each slave over approximately the past minute, with data
sent more recently weighted more heavily than data sent less recently. It considers each of the slaves in order from
most-loaded to least-loaded. If highly loaded slave H is significantly more heavily loaded than the least-loaded slave
L, and slave H carries at least two hashes, then vswitchd shifts one of H’s hashes to L. However, vswitchd will only
shift a hash from H to L if it will decrease the ratio of the load between H and L by at least 0.1.

Currently, “significantly more loaded” means that H must carry at least 1 Mbps more traffic, and that traffic must be at
least 3% greater than L’s.

4.1. OVS 157

Open vSwitch, Release 2.9.4

Bond Balance Modes

Each bond balancing mode has different considerations, described below.

LACP Bonding

LACP bonding requires the remote switch to implement LACP, but it is otherwise very simple in that, after LACP
negotiation is complete, there is no need for special handling of received packets.

Several of the physical switches that support LACP block all traffic for ports that are configured to use LACP, until
LACEP is negotiated with the host. When configuring a LACP bond on a OVS host (eg: XenServer), this means that
there will be an interruption of the network connectivity between the time the ports on the physical switch and the
bond on the OVS host are configured. The interruption may be relatively long, if different people are responsible for
managing the switches and the OVS host.

Such network connectivity failure can be avoided if LACP can be configured on the OVS host before configuring the
physical switch, and having the OVS host fall back to a bond mode (active-backup) till the physical switch LACP
configuration is complete. An option “lacp-fallback-ab” exists to provide such behavior on openvswitch.

Active Backup Bonding

Active Backup bonds send all traffic out one “active” slave until that slave becomes unavailable. Since they are
significantly less complicated than SLB bonds, they are preferred when LACP is not an option. Additionally, they are
the only bond mode which supports attaching each slave to a different upstream switch.

SLB Bonding

SLB bonding allows a limited form of load balancing without the remote switch’s knowledge or cooperation. The
basics of SLB are simple. SLB assigns each source MAC+VLAN pair to a link and transmits all packets from that
MAC+VLAN through that link. Learning in the remote switch causes it to send packets to that MAC+VLAN through
the same link.

SLB bonding has the following complications:

0. When the remote switch has not learned the MAC for the destination of a unicast packet and hence floods the
packet to all of the links on the SLB bond, Open vSwitch will forward duplicate packets, one per link, to each
other switch port.

Open vSwitch does not solve this problem.

1. When the remote switch receives a multicast or broadcast packet from a port not on the SLB bond, it will forward
it to all of the links in the SLB bond. This would cause packet duplication if not handled specially.

Open vSwitch avoids packet duplication by accepting multicast and broadcast packets on only the active slave,
and dropping multicast and broadcast packets on all other slaves.

2. When Open vSwitch forwards a multicast or broadcast packet to a link in the SLB bond other than the active
slave, the remote switch will forward it to all of the other links in the SLB bond, including the active slave.
Without special handling, this would mean that Open vSwitch would forward a second copy of the packet to
each switch port (other than the bond), including the port that originated the packet.

Open vSwitch deals with this case by dropping packets received on any SLB bonded link that have a source
MAC+VLAN that has been learned on any other port. (This means that SLB as implemented in Open vSwitch
relies critically on MAC learning. Notably, SLB is incompatible with the “flood_vlans” feature.)

158 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

3. Suppose that a MAC+VLAN moves to an SLB bond from another port (e.g. when a VM is migrated from this
hypervisor to a different one). Without additional special handling, Open vSwitch will not notice until the MAC
learning entry expires, up to 60 seconds later as a consequence of rule #2.

Open vSwitch avoids a 60-second delay by listening for gratuitous ARPs, which VMs commonly emit upon
migration. As an exception to rule #2, a gratuitous ARP received on an SLB bond is not dropped and updates
the MAC learning table in the usual way. (If a move does not trigger a gratuitous ARP, or if the gratuitous ARP
is lost in the network, then a 60-second delay still occurs.)

4. Suppose that a MAC+VLAN moves from an SLB bond to another port (e.g. when a VM is migrated from a
different hypervisor to this one), that the MAC+VLAN emits a gratuitous ARP, and that Open vSwitch forwards
that gratuitous ARP to a link in the SLB bond other than the active slave. The remote switch will forward the
gratuitous ARP to all of the other links in the SLB bond, including the active slave. Without additional special
handling, this would mean that Open vSwitch would learn that the MAC+VLAN was located on the SLB bond,
as a consequence of rule #3.

Open vSwitch avoids this problem by “locking” the MAC learning table entry for a MAC+VLAN from which a
gratuitous ARP was received from a non-SLB bond port. For 5 seconds, a locked MAC learning table entry will
not be updated based on a gratuitous ARP received on a SLB bond.

4.1.7 OVSDB Replication Implementation

Given two Open vSwitch databases with the same schema, OVSDB replication keeps these databases in the same state,
i.e. each of the databases have the same contents at any given time even if they are not running in the same host. This
document elaborates on the implementation details to provide this functionality.

Terminology

Source of truth database database whose content will be replicated to another database.
Active server ovsdb-server providing RPC interface to the source of truth database.

Standby server ovsdb-server providing RPC interface to the database that is not the source of truth.

Design

The overall design of replication consists of one ovsdb-server (active server) communicating the state of its databases
to another ovsdb-server (standby server) so that the latter keep its own databases in that same state. To achieve this,
the standby server acts as a client of the active server, in the sense that it sends a monitor request to keep up to date
with the changes in the active server databases. When a notification from the active server arrives, the standby server
executes the necessary set of operations so its databases reach the same state as the the active server databases. Below
is the design represented as a diagram.:

to————— + replication to————— +
\ Active |<———mm \ Standby \
| OVSDB-server | | OVSDB-server |
Fomm e + Fomm e +
\ \
\ \
tm—————- + it +
| SoT | \ \
| OVSDB | | OVSDB |
to————— + it +

4.1. OVS 159

Open vSwitch, Release 2.9.4

Setting Up The Replication

To initiate the replication process, the standby server must be executed indicating the location of the active server via
the command line option ——sync-from=server, where server can take any form described in the ovsdb-client
manpage and it must specify an active connection type (tcp, unix, ssl). This option will cause the standby server to
attempt to send a monitor request to the active server in every main loop iteration, until the active server responds.

When sending a monitor request the standby server is doing the following:
1. Erase the content of the databases for which it is providing a RPC interface.
2. Open the jsonrpc channel to communicate with the active server.
3. Fetch all the databases located in the active server.
4

. For each database with the same schema in both the active and standby servers: construct and send a monitor
request message specifying the tables that will be monitored (i.e all the tables on the database except the ones
blacklisted [*]).

5. Set the standby database to the current state of the active database.

Once the monitor request message is sent, the standby server will continuously receive notifications of changes occur-
ring to the tables specified in the request. The process of handling this notifications is detailed in the next section.

[*] A set of tables that will be excluded from replication can be configure as a blacklist of tables via the command
line option ——sync-exclude-tables=db:table[,db:table] ..., where db corresponds to the database
where the table resides.

Replication Process

The replication process consists on handling the update notifications received in the standby server caused by the
monitor request that was previously sent to the active server. In every loop iteration, the standby server attempts to
receive a message from the active server which can be an error, an echo message (used to keep the connection alive) or
an update notification. In case the message is a fatal error, the standby server will disconnect from the active without
dropping the replicated data. If it is an echo message, the standby server will reply with an echo message as well. If
the message is an update notification, the following process occurs:

1. Create a new transaction.
2. Get the <table-updates> object from the params member of the notification.
3. For each <table-update> in the <table-updates> object do:

(a) For each <row—update> in <table-update> check what kind of operation should be executed ac-
cording to the following criteria about the presence of the object members:

* If o1d member is not present, execute an insert operation using <row> from the new member.

* If 01d member is present and new member is not present, execute a delete operation using <row>
from the o1d member

 If both 01d and new members are present, execute an update operation using <row> from the new
member.

4. Commit the transaction.

If an error occurs during the replication process, all replication is restarted by resending a new monitor request
as described in the section “Setting up the replication”.

160 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

Runtime Management Commands

Runtime management commands can be sent to a running standby server via ovs-appctl in order to configure the
replication functionality. The available commands are the following.
ovsdb-server/set-remote-ovsdb—-server {server} setsthe name of the active server
ovsdb-server/get-remote-ovsdb-server gets the name of the active server

ovsdb-server/connect-remote—ovsdb-server causes the server to attempt to send a monitor request
every main loop iteration

ovsdb-server/disconnect—-remote—-ovsdb-server closes the jsonrpc channel between the active server
and frees the memory used for the replication configuration.

ovsdb-server/set-sync-exclude-tables {db:table, ...} sets the tables list that will be excluded
from being replicated

ovsdb-server/get—-sync—excluded-tables gets the tables list that is currently excluded from replication

4.1.8 The DPDK Datapath

DPDK vHost User Ports

The DPDK datapath provides DPDK-backed vHost user ports as a primary way to interact with guests. For more
information on vHost User, refer to the QEMU documentation on same.

Quick Example

This example demonstrates how to add two dpdkvhostuserclient ports to an existing bridge called br0:

$ ovs-vsctl add-port br0 dpdkvhostclientO \
—-— set Interface dpdkvhostclientO type=dpdkvhostuserclient \
options:vhost-server—-path=/tmp/dpdkvhostclient0
$ ovs-vsctl add-port br0 dpdkvhostclientl \
-— set Interface dpdkvhostclientl type=dpdkvhostuserclient \
options:vhost-server—-path=/tmp/dpdkvhostclientl

For the above examples to work, an appropriate server socket must be created at the paths specified (/tmp/
dpdkvhostclientO and /tmp/dpdkvhostclientl). These sockets can be created with QEMU; see the
vhost-user client section for details.

vhost-user vs. vhost-user-client

Open vSwitch provides two types of vHost User ports:
* vhost-user (dpdkvhostuser)
¢ vhost-user-client (dpdkvhostuserclient)

vHost User uses a client-server model. The server creates/manages/destroys the vHost User sockets, and the client
connects to the server. Depending on which port type you use, dpdkvhostuser or dpdkvhostuserclient, a
different configuration of the client-server model is used.

For vhost-user ports, Open vSwitch acts as the server and QEMU the client. This means if OVS dies, all VMs must
be restarted. On the other hand, for vhost-user-client ports, OVS acts as the client and QEMU the server. This means

4.1. OVS 161

http://git.qemu-project.org/?p=qemu.git;a=blob;f=docs/specs/vhost-user.txt;h=7890d7169;hb=HEAD

Open vSwitch, Release 2.9.4

OVS can die and be restarted without issue, and it is also possible to restart an instance itself. For this reason, vhost-
user-client ports are the preferred type for all known use cases; the only limitation is that vhost-user client mode ports
require QEMU version 2.7. Ports of type vhost-user are currently deprecated and will be removed in a future release.

vhost-user

Important: Use of vhost-user ports requires QEMU >= 2.2; vhost-user ports are deprecated.

To use vhost-user ports, you must first add said ports to the switch. DPDK vhost-user ports can have arbitrary
names with the exception of forward and backward slashes, which are prohibited. For vhost-user, the port type is
dpdkvhostuser:

$ ovs-vsctl add-port br0 vhost-user-1 —-- set Interface vhost-user-1 \
type=dpdkvhostuser

This action creates a socket located at /usr/local/var/run/openvswitch/vhost-user—1, which you
must provide to your VM on the QEMU command line.

Note: If you wish for the vhost-user sockets to be created in a sub-directory of /usr/local/var/run/
openvswitch, you may specify this directory in the ovsdb like so:

$ ovs-vsctl —--no-wait \
set Open_vSwitch . other_config:vhost-sock-dir=subdir

Once the vhost-user ports have been added to the switch, they must be added to the guest. There are two ways to do
this: using QEMU directly, or using libvirt.

Note: IOMMU is not supported with vhost-user ports.

Adding vhost-user ports to the guest (QEMU)

To begin, you must attach the vhost-user device sockets to the guest. To do this, you must pass the following parameters
to QEMU:

-chardev socket, id=charl,path=/usr/local/var/run/openvswitch/vhost-user—1
-netdev type=vhost-user, id=mynetl, chardev=charl, vhostforce
—device virtio-net-pci,mac=00:00:00:00:00:01, netdev=mynetl

where vhost-user—1 is the name of the vhost-user port added to the switch.

Repeat the above parameters for multiple devices, changing the chardev path and id as necessary. Note that a
separate and different chardev path needs to be specified for each vhost-user device. For example you have a second
vhost-user port named vhost —user-2, you append your QEMU command line with an additional set of parameters:

—chardev socket, id=char2,path=/usr/local/var/run/openvswitch/vhost-user-2
-netdev type=vhost-user, id=mynet2, chardev=char2, vhostforce
—~device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet?2

162 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

In addition, QEMU must allocate the VM’s memory on hugetlbfs. vhost-user ports access a virtio-net device’s virtual
rings and packet buffers mapping the VM’s physical memory on hugetlbfs. To enable vhost-user ports to map the
VM’s memory into their process address space, pass the following parameters to QEMU:

-object memory-backend-file, id=mem, size=4096M, mem-path=/dev/hugepages, share=on
—numa node, memdev=mem -mem-prealloc

Finally, you may wish to enable multiqueue support. This is optional but, should you wish to enable it, run:

—-chardev socket, id=char2,path=/usr/local/var/run/openvswitch/vhost-user-2
-netdev type=vhost-user, id=mynet2, chardev=char2,vhostforce, queues=$q
—-device virtio-net-pci,mac=00:00:00:00:00:02, netdev=mynet2,mg=on,vectors=5$v

where:
$qg The number of queues
$v The number of vectors, which is $g * 2 + 2

The vhost-user interface will be automatically reconfigured with required number of rx and tx queues after connection
of virtio device. Manual configuration of n_rxqg is not supported because OVS will work properly only if n_rxqg
will match number of queues configured in QEMU.

A least 2 PMDs should be configured for the vswitch when using multiqueue. Using a single PMD will cause traffic
to be enqueued to the same vhost queue rather than being distributed among different vhost queues for a vhost-user
interface.

If traffic destined for a VM configured with multiqueue arrives to the vswitch via a physical DPDK port, then the
number of rxqs should also be set to at least 2 for that physical DPDK port. This is required to increase the probability
that a different PMD will handle the multiqueue transmission to the guest using a different vhost queue.

If one wishes to use multiple queues for an interface in the guest, the driver in the guest operating system must be
configured to do so. It is recommended that the number of queues configured be equal to $q.

For example, this can be done for the Linux kernel virtio-net driver with:

$ ethtool -L <DEV> combined <$g>

where:
—L Changes the numbers of channels of the specified network device

combined Changes the number of multi-purpose channels.

Adding vhost-user ports to the guest (libvirt)

To begin, you must change the user and group that gemu runs under, and restart libvirtd.

* In /etc/libvirt/gemu. conf add/edit the following lines:

user = "root"
group = "root"

* Finally, restart the libvirtd process, For example, on Fedora:

$ systemctl restart libvirtd.service

Once complete, instantiate the VM. A sample XML configuration file is provided at the end of this file. Save this file,
then create a VM using this file:

4.1. OVS 163

Open vSwitch, Release 2.9.4

’$ virsh create demovm.xml

Once created, you can connect to the guest console:

’$ virsh console demovm

The demovm xml configuration is aimed at achieving out of box performance on VM. These enhancements include:
» The vcpus are pinned to the cores of the CPU socket 0 using vepupin.
* Configure NUMA cell and memory shared using memAccess="'shared'.
e Disable mrg_rxbuf="off"'

Refer to the libvirt documentation for more information.

vhost-user-client

Important: Use of vhost-user ports requires QEMU >= 2.7

To use vhost-user-client ports, you must first add said ports to the switch. Like DPDK vhost-user ports, DPDK vhost-
user-client ports can have mostly arbitrary names. However, the name given to the port does not govern the name
of the socket device. Instead, this must be configured by the user by way of a vhost-server-path option. For
vhost-user-client, the port type is dpdkvhostuserclient:

$ VHOST_USER_SOCKET_PATH=/path/to/socket
$ ovs-vsctl add-port br0 vhost-client-1 \
—-— set Interface vhost-client-1 type=dpdkvhostuserclient \
options:vhost-server-path=$VHOST_USER_SOCKET_PATH

Once the vhost-user-client ports have been added to the switch, they must be added to the guest. Like vhost-user ports,
there are two ways to do this: using QEMU directly, or using libvirt. Only the QEMU case is covered here.

Adding vhost-user-client ports to the guest (QEMU)

Attach the vhost-user device sockets to the guest. To do this, you must pass the following parameters to QEMU:

—chardev socket, id=charl, path=$VHOST_USER_SOCKET_PATH, server
-netdev type=vhost-user, id=mynetl, chardev=charl,vhostforce
—device virtio-net-pci,mac=00:00:00:00:00:01, netdev=mynetl

where vhost-user-1 is the name of the vhost-user port added to the switch.

If the corresponding dpdkvhostuserclient port has not yet been configured in OVS with
vhost-server—-path=/path/to/socket, QEMU will print a log similar to the following:

QEMU waiting for connection on: disconnected:unix:/path/to/socket, server

QEMU will wait until the port is created sucessfully in OVS to boot the VM. One benefit of using this mode is the
ability for vHost ports to ‘reconnect’ in event of the switch crashing or being brought down. Once it is brought back
up, the vHost ports will reconnect automatically and normal service will resume.

164 Chapter 4. Deep Dive

http://libvirt.org/formatdomain.html

Open vSwitch, Release 2.9.4

vhost-user-client IOMMU Support

vhost IOMMU is a feature which restricts the vhost memory that a virtio device can access, and as such is useful in
deployments in which security is a concern.

IOMMU support may be enabled via a global config value, * vhost-iommu-support . Setting this to true enables
vhost IOMMU support for all vhost ports when/where available:

$ ovs-vsctl set Open_vSwitch . other_config:vhost—-iommu-support=true

The default value is false.

Important: Changing this value requires restarting the daemon.

Important: Enabling the IOMMU feature also enables the vhost user reply-ack protocol; this is known to work
on QEMU v2.10.0, but is buggy on older versions (2.7.0 - 2.9.0, inclusive). Consequently, the IOMMU feature is
disabled by default (and should remain so if using the aforementioned versions of QEMU). Starting with QEMU
v2.9.1, vhost-iommu-support can safely be enabled, even without having an IOMMU device, with no performance
penalty.

DPDK in the Guest

The DPDK testpmd application can be run in guest VMs for high speed packet forwarding between vhostuser ports.
DPDK and testpmd application has to be compiled on the guest VM. Below are the steps for setting up the testpmd
application in the VM.

Note: Support for DPDK in the guest requires QEMU >= 2.2

To begin, instantiate a guest as described in viost-user or vhost-user-client. Once started, connect to the VM, download
the DPDK sources to VM and build DPDK:

cd /root/dpdk/

wget http://fast.dpdk.org/rel/dpdk-17.11.4.tar.xz
tar xf dpdk-17.11.4.tar.xz

export DPDK_DIR=/root/dpdk/dpdk-stable-17.11.4
export DPDK_TARGET=x86_64-native-linuxapp-gcc
export DPDK_BUILD=$DPDK_DIR/S$SDPDK_TARGET

cd $DPDK_DIR

make install T=$DPDK_TARGET DESTDIR=install

v W Uy O Ay

Build the test-pmd application:

cd app/test-pmd

export RTE_SDK=S$DPDK_DIR
export RTE_TARGET=$DPDK_TARGET
make

v A

Setup huge pages and DPDK devices using UIO:

4.1. OVS 165

Open vSwitch, Release 2.9.4

sysctl vm.nr_hugepages=1024
mkdir -p /dev/hugepages

modprobe uio

insmod S$DPDK_BUILD/kmod/igb_uio.ko
$DPDK_DIR/usertools/dpdk-devbind.py --status
$DPDK_DIR/usertools/dpdk-devbind.py -b igb_uio 00:03.0 00:04.0

v v W

mount -t hugetlbfs hugetlbfs /dev/hugepages # only if not already mounted

Note: vhost ports pci ids can be retrieved using:

’lspci | grep Ethernet

Finally, start the application:

’# TODO

Sample XML

<domain type='kvm'>
<name>demovm</name>
<uuid>4a9b3f53-fa2a-47£3-a757-dd87720d49d1d</uuid>
<memory unit='KiB'>4194304</memory>
<currentMemory unit='KiBR'>4194304</currentMemory>
<memoryBacking>
<hugepages>
<page size='2' unit='M' nodeset='0"'/>
</hugepages>
</memoryBacking>
<vcpu placement='static'>2</vcpu>
<cputune>
<shares>4096</shares>
<vcpupin vcpu='0'"' cpuset='4"/>
<vcpupin vcpu='1l"' cpuset='5"/>
<emulatorpin cpuset='4,5"'/>
</cputune>
<os>
<type arch='x86_64" machine="'pc'>hvm</type>
<boot dev='hd'/>
</os>
<features>
<acpi/>
<apic/>
</features>
<cpu mode='"host-model'>
<model fallback='allow'/>
<topology sockets='2"' cores='l"' threads='1"'/>
<numa>

</numa>
</cpu>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>

<cell id='0" cpus='0-1" memory='4194304"' unit='KiB' memAccess='shared'/>

(continues on next page)

166

Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

(continued from previous page)

<devices>
<emulator>/usr/bin/gemu-system-x86_64</emulator>
<disk type='file' device='disk'>
<driver name='gemu' type='gcow2' cache='none'/>
<source file='/root/Cent0S7_x86_64.qgcow2'/>
<target dev='vda' bus='virtio'/>
</disk>
<interface type='vhostuser'>
<mac address='00:00:00:00:00:01"/>
<source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuser0' mode=
—'client'/>
<model type='virtio'/>
<driver queues='2"'>
<host mrg_rxbuf='on'/>
</driver>
</interface>
<interface type='vhostuser'>
<mac address='00:00:00:00:00:02"/>
<source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuserl' mode=
—'client'/>
<model type='virtio'/>
<driver queues='2"'>
<host mrg_rxbuf='on'/>
</driver>
</interface>
<serial type='pty'>
<target port='0"'/>
</serial>
<console type='pty'>
<target type='serial' port='0"'/>
</console>
</devices>
</domain>

vhost-user Dequeue Zero Copy (experimental)

Normally when dequeuing a packet from a vHost User device, a memcpy operation must be used to copy that packet
from guest address space to host address space. This memcpy can be removed by enabling dequeue zero-copy like so:

$ ovs-vsctl add-port br0 dpdkvhostuserclient0 -- set Interface \
dpdkvhostuserclient0 type=dpdkvhostuserclient \
options:vhost-server—-path=/tmp/dpdkvhostclient0 \
options:dg-zero-copy=true

With this feature enabled, a reference (pointer) to the packet is passed to the host, instead of a copy of the packet.
Removing this memcpy can give a performance improvement for some use cases, for example switching large packets
between different VMs. However additional packet loss may be observed.

Note that the feature is disabled by default and must be explicitly enabled by setting the dg-zero—copy option
to t rue while specifying the vhost-server-path option as above. If you wish to split out the command into
multiple commands as below, ensure dg—zero—-copy is set before vhost-server—-path:

$ ovs-vsctl set Interface dpdkvhostuserclient(O options:dg-zero-copy=true
$ ovs-vsctl set Interface dpdkvhostuserclientO \
options:vhost-server-path=/tmp/dpdkvhostclientO

4.1. OVS 167

Open vSwitch, Release 2.9.4

The feature is only available to dpdkvhostuserclient port types.

A limitation exists whereby if packets from a vHost port with dg-zero-copy=true are destined for a dpdk type
port, the number of tx descriptors (n_txqg_desc) for that port must be reduced to a smaller number, 128 being the
recommended value. This can be achieved by issuing the following command:

$ ovs-vsctl set Interface dpdkport options:n_txqg desc=128

Note: The sum of the tx descriptors of all dpdk ports the VM will send to should not exceed 128. For example, in
case of a bond over two physical ports in balance-tcp mode, one must divide 128 by the number of links in the bond.

Refer to DPDK Physical Port Queue Sizes for more information.

The reason for this limitation is due to how the zero copy functionality is implemented. The vHost device’s ‘tx used
vring’, a virtio structure used for tracking used ie. sent descriptors, will only be updated when the NIC frees the
corresponding mbuf. If we don’t free the mbufs frequently enough, that vring will be starved and packets will no
longer be processed. One way to ensure we don’t encounter this scenario, is to configure n_txg_desc to a small
enough number such that the ‘mbuf free threshold’ for the NIC will be hit more often and thus free mbufs more
frequently. The value of 128 is suggested, but values of 64 and 256 have been tested and verified to work too, with
differing performance characteristics. A value of 512 can be used too, if the virtio queue size in the guest is increased
to 1024 (available to configure in QEMU versions v2.10 and greater). This value can be set like so:

$ gemu-system-x86_64 ... —-chardev socket,id=charl, path=<sockpath>, server
-netdev type=vhost-user, id=mynetl, chardev=charl, vhostforce
—device virtio-net-pci,mac=00:00:00:00:00:01, netdev=mynetl,
tx_queue_size=1024

Because of this limitation, this feature is considered ‘experimental’.

Further information can be found in the DPDK documentation

DPDK Ring Ports

Warning: DPDK ring interfaces cannot be used for guest communication and are retained mainly for backwards
compatibility purposes. In nearly all cases, vhost-user ports are a better choice and should be used instead.

The DPDK datapath provides DPDK-backed ring ports that are implemented using DPDK’s 1ibrte_ring library.
For more information on this library, refer to the DPDK documentation.

Quick Example

This example demonstrates how to add a dpdkr port to an existing bridge called br0:

$ ovs-vsctl add-port br0 dpdkr0 -- set Interface dpdkr0 type=dpdkr

dpdkr

To use ring ports, you must first add said ports to the switch. Unlike vhost-user ports, ring port names must take a
specific format, dpdk rNN, where NN is the port ID. For example:

$ ovs-vsctl add-port br0 dpdkr0 -- set Interface dpdkr0 type=dpdkr

168 Chapter 4. Deep Dive

http://dpdk.readthedocs.io/en/v17.11/prog_guide/vhost_lib.html
https://dpdk.readthedocs.io/en/v17.11/prog_guide/ring_lib.html

Open vSwitch, Release 2.9.4

Once the port has been added to the switch, they can be used by host processes. A sample loopback application -
test-dpdkr - is included with Open vSwitch. To use this, run the following:

$./tests/test-dpdkr -c 1 -n 4 —--proc-type=secondary —-- -n 0

Further functionality would require developing your own application. Refer to the DPDK documentation for more
information on how to do this.

Adding dpdkr ports to the guest

It is not recommended to use ring ports from guests. Historically, this was possible using a patched version of QEMU
and the IVSHMEM feature provided with DPDK. However, this functionality was removed because:

e The IVSHMEM library was removed from DPDK in DPDK 16.11

* Support for IVSHMEM was never upstreamed to QEMU and has been publicly rejected by the QEMU commu-
nity

* vhost-user interfaces are the defacto DPDK-based path to guests

4.1.9 OVS-on-Hyper-V Design

This document provides details of the effort to develop Open vSwitch on Microsoft Hyper-V. This document should
give enough information to understand the overall design.

Note: The userspace portion of the OVS has been ported to Hyper-V in a separate effort, and committed to the
openvswitch repo. This document will mostly emphasize on the kernel driver, though we touch upon some of the
aspects of userspace as well.

Background Info

Microsoft’s hypervisor solution - Hyper-V' implements a virtual switch that is extensible and provides opportunities
for other vendors to implement functional extensions’. The extensions need to be implemented as NDIS drivers that
bind within the extensible switch driver stack provided. The extensions can broadly provide the functionality of moni-
toring, modifying and forwarding packets to destination ports on the Hyper-V extensible switch. Correspondingly, the
extensions can be categorized into the following types and provide the functionality noted:

 Capturing extensions: monitoring packets
* Filtering extensions: monitoring, modifying packets
» Forwarding extensions: monitoring, modifying, forwarding packets

As can be expected, the kernel portion (datapath) of OVS on Hyper-V solution will be implemented as a forwarding
extension.

In Hyper-V, the virtual machine is called the Child Partition. Each VIF or physical NIC on the Hyper-V extensible
switch is attached via a port. Each port is both on the ingress path or the egress path of the switch. The ingress path
is used for packets being sent out of a port, and egress is used for packet being received on a port. By design, NDIS
provides a layered interface. In this layered interface, higher level layers call into lower level layers, in the ingress
path. In the egress path, it is the other way round. In addition, there is a object identifier (OID) interface for control

! Hyper-V Extensible Switch https:/msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch
2 Hyper-V Extensible Switch Extensions https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-extensions

4.1. OVS 169

https://dpdk.readthedocs.io/en/v17.11/prog_guide/ring_lib.html
https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch
https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-extensions

Open vSwitch, Release 2.9.4

operations Eg. addition of a port. The workflow for the calls is similar in nature to the packets, where higher level
layers call into the lower level layers. A good representational diagram of this architecture is in*.

Windows Filtering Platform (WFP) is a platform implemented on Hyper-V that provides APIs and services for filter-
ing packets. WFP has been utilized to filter on some of the packets that OVS is not equipped to handle directly. More
details in later sections.

IP Helper® is a set of API available on Hyper-V to retrieve information related to the network configuration information
on the host machine. IP Helper has been used to retrieve some of the configuration information that OVS needs.

Design

Various blocks of the OVS Windows implementation

\ \
\ \
\ \
fo————— + e + | +————— I + |
| [| [\ \ [
ovs—		oVS—			Virtual		Virtual
*ctl		USERSPACE			Machine #1/	Machine #2	
[DAEMON	[\ \						
fo———— fott———t————————— +	+——F—————— =t = ++	= +					
dpif-		netdev-			[VIF #1]	VIF #2]	
netlink		windows		- + Fm———— +		NIC	
- + +—————— + | | /\ | +—————— +
User /\ /\ \ [| *#1% w#dx || /\
s========| | =========| | ============{+-—————- [l [1——+ [
Kernel [[\/ [| |=====/
\/ \/ Fm——— + F——— + *x#5%
e e e e e + | \ | \
\ - + \ | \ | \
\ \ OVS Pseudo Device | \ | \ |
\ Fom e + | | \ | \
\ | Netlink Impl. | | | \ |
lf e \ [I | |
| - + | [N | [
| | Flowtable | +-——————————— + | G | | G |
| o + | Packet | |*#2%/ R | [R
| o + | Processing | [<=> | E | | E |
\ \ WEP | \ [[s | [s |
| | Driver | e + | [s | [s |
\ Femm + | | \ | \
\ | | \ | \
| OVS FORWARDING EXTENSION | | | | |
e + F———— o B +
|HYPER-V Extensible Switch *#3/
e +

NDIS STACK

This diagram shows the various blocks involved in the OVS Windows implementation, along with some of the com-
ponents available in the NDIS stack, and also the virtual machines. The workflow of a packet being transmitted from

4 Hyper-V Extensible Switch Components https://msdn.microsoft.com/windows/hardware/drivers/network/
hyper-v-extensible-switch-components

5 Windows Filtering Platform https://msdn.microsoft.com/en-us/library/windows/desktop/aa366510(v=vs.85).aspx

6 IP Helper https://msdn.microsoft.com/windows/hardware/drivers/network/ip-helper

170 Chapter 4. Deep Dive

https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-components
https://msdn.microsoft.com/windows/hardware/drivers/network/hyper-v-extensible-switch-components
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366510(v=vs.85).aspx
https://msdn.microsoft.com/windows/hardware/drivers/network/ip-helper

Open vSwitch, Release 2.9.4

a VIF out and into another VIF and to a physical NIC is also shown. Later on in this section, we will discuss the flow
of a packet at a high level.

The figure gives a general idea of where the OVS userspace and the kernel components fit in, and how they interface
with each other.

The kernel portion (datapath) of OVS on Hyper-V solution has be implemented as a forwarding extension roughly
implementing the following sub-modules/functionality. Details of each of these sub-components in the kernel are
contained in later sections:

* Interfacing with the NDIS stack
* Netlink message parser

* Netlink sockets

» Switch/Datapath management

¢ Interfacing with userspace portion of the OVS solution to implement the necessary functionality that userspace
needs

* Port management

» Flowtable/Actions/packet forwarding
¢ Tunneling

» Event notifications

The datapath for the OVS on Linux is a kernel module, and cannot be directly ported since there are significant differ-
ences in architecture even though the end functionality provided would be similar. Some examples of the differences
are:

¢ Interfacing with the NDIS stack to hook into the NDIS callbacks for functionality such as receiving and sending
packets, packet completions, OIDs used for events such as a new port appearing on the virtual switch.

* Interface between the userspace and the kernel module.
» Event notifications are significantly different.

* The communication interface between DPIF and the kernel module need not be implemented in the way OVS
on Linux does. That said, it would be advantageous to have a similar interface to the kernel module for reasons
of readability and maintainability.

* Any licensing issues of using Linux kernel code directly.

Due to these differences, it was a straightforward decision to develop the datapath for OVS on Hyper-V from scratch
rather than porting the one on Linux. A re-development focused on the following goals:

* Adhere to the existing requirements of userspace portion of OVS (such as ovs-vswitchd), to minimize changes
in the userspace workflow.

« Fit well into the typical workflow of a Hyper-V extensible switch forwarding extension.

The userspace portion of the OVS solution is mostly POSIX code, and not very Linux specific. Majority of the
userspace code does not interface directly with the kernel datapath and was ported independently of the kernel datapath
effort.

As explained in the OVS porting design document’, DPIF is the portion of userspace that interfaces with the kernel
portion of the OVS. The interface that each DPIF provider has to implement is defined in dpif-provider.h’.
Though each platform is allowed to have its own implementation of the DPIF provider, it was found, via community
feedback, that it is desired to share code whenever possible. Thus, the DPIF provider for OVS on Hyper-V shares code
with the DPIF provider on Linux. This interface is implemented in dpif-netlink.c.

7 How to Port Open vSwitch to New Software or Hardware Porting Open vSwitch to New Software or Hardware
3 DPIF Provider http://openvswitch.sourcearchive.com/documentation/1.1.0- 1/dpif-provider_8h_source.html

4.1. OVS 171

http://openvswitch.sourcearchive.com/documentation/1.1.0-1/dpif-provider_8h_source.html

Open vSwitch, Release 2.9.4

We’ll elaborate more on kernel-userspace interface in a dedicated section below. Here it suffices to say that the DPIF
provider implementation for Windows is netlink-based and shares code with the Linux one.

Kernel Module (Datapath)

Interfacing with the NDIS Stack

For each virtual switch on Hyper-V, the OVS extensible switch extension can be enabled/disabled. We support enabling
the OVS extension on only one switch. This is consistent with using a single datapath in the kernel on Linux. All the
physical adapters are connected as external adapters to the extensible switch.

When the OVS switch extension registers itself as a filter driver, it also registers callbacks for the switch/port man-
agement and datapath functions. In other words, when a switch is created on the Hyper-V root partition (host), the
extension gets an activate callback upon which it can initialize the data structures necessary for OVS to function.
Similarly, there are callbacks for when a port gets added to the Hyper-V switch, and an External Network adapter or a
VM Network adapter is connected/disconnected to the port. There are also callbacks for when a VIF (NIC of a child
partition) send out a packet, or a packet is received on an external NIC.

As shown in the figures, an extensible switch extension gets to see a packet sent by the VM (VIF) twice - once on the
ingress path and once on the egress path. Forwarding decisions are to be made on the ingress path. Correspondingly,
we will be hooking onto the following interfaces:

* Ingress send indication: intercept packets for performing flow based forwarding.This includes straight forward-
ing to output ports. Any packet modifications needed to be performed are done here either inline or by creating
a new packet. A forwarding action is performed as the flow actions dictate.

¢ Ingress completion indication: cleanup and free packets that we generated on the ingress send path, pass-through
for packets that we did not generate.

» Egress receive indication: pass-through.

* Egress completion indication: pass-through.

Interfacing with OVS Userspace

We have implemented a pseudo device interface for letting OVS userspace talk to the OVS kernel module. This is
equivalent to the typical character device interface on POSIX platforms where we can register custom functions for
read, write and ioctl functionality. The pseudo device supports a whole bunch of ioctls that netdev and DPIF on OVS
userspace make use of.

Netlink Message Parser

The communication between OVS userspace and OVS kernel datapath is in the form of Netlink messages',®. More
details about this are provided below. In the kernel, a full fledged netlink message parser has been implemented along
the lines of the netlink message parser in OVS userspace. In fact, a lot of the code is ported code.

On the lines of struct ofpbuf in OVS userspace, a managed buffer has been implemented in the kernel datapath
to make it easier to parse and construct netlink messages.

8 Netlink https://en.wikipedia.org/wiki/Netlink

172 Chapter 4. Deep Dive

https://en.wikipedia.org/wiki/Netlink

Open vSwitch, Release 2.9.4

Netlink Sockets

On Linux, OVS userspace utilizes netlink sockets to pass back and forth netlink messages. Since much of userspace
code including DPIF provider in dpif-netlink.c (formerly dpif-linux.c) has been reused, pseudo-netlink sockets have
been implemented in OVS userspace. As it is known, Windows lacks native netlink socket support, and also the socket
family is not extensible either. Hence it is not possible to provide a native implementation of netlink socket. We
emulate netlink sockets in lib/netlink-socket.c and support all of the nl_* APIs to higher levels. The implementation
opens a handle to the pseudo device for each netlink socket. Some more details on this topic are provided in the
userspace section on netlink sockets.

Typical netlink semantics of read message, write message, dump, and transaction have been implemented so that
higher level layers are not affected by the netlink implementation not being native.

Switch/Datapath Management

As explained above, we hook onto the management callback functions in the NDIS interface for when to initialize the
OVS data structures, flow tables etc. Some of this code is also driven by OVS userspace code which sends down ioctls
for operations like creating a tunnel port etc.

Port Management

As explained above, we hook onto the management callback functions in the NDIS interface to know when a port is
added/connected to the Hyper-V switch. We use these callbacks to initialize the port related data structures in OVS.
Also, some of the ports are tunnel ports that don’t exist on the Hyper-V switch and get added from OVS userspace.

In order to identify a Hyper-V port, we use the value of ‘FriendlyName’ field in each Hyper-V port. We call this the
“OVS-port-name”. The idea is that OVS userspace sets ‘OVS-port-name’ in each Hyper-V port to the same value as
the ‘name’ field of the ‘Interface’ table in OVSDB. When OVS userspace calls into the kernel datapath to add a port,
we match the name of the port with the ‘OVS-port-name’ of a Hyper-V port.

‘We maintain separate hash tables, and separate counters for ports that have been added from the Hyper-V switch, and
for ports that have been added from OVS userspace.

Flowtable/Actions/Packet Forwarding

The flowtable and flow actions based packet forwarding is the core of the OVS datapath functionality. For each packet
on the ingress path, we consult the flowtable and execute the corresponding actions. The actions can be limited to
simple forwarding to a particular destination port(s), or more commonly involves modifying the packet to insert a
tunnel context or a VLAN ID, and thereafter forwarding to the external port to send the packet to a destination host.

Tunneling

We make use of the Internal Port on a Hyper-V switch for implementing tunneling. The Internal Port is a virtual
adapter that is exposed on the Hyper- V host, and connected to the Hyper-V switch. Basically, it is an interface
between the host and the virtual switch. The Internal Port acts as the Tunnel end point for the host (aka VTEP), and
holds the VTEP IP address.

Tunneling ports are not actual ports on the Hyper-V switch. These are virtual ports that OVS maintains and while
executing actions, if the outport is a tunnel port, we short circuit by performing the encapsulation action based on
the tunnel context. The encapsulated packet gets forwarded to the external port, and appears to the outside world as
though it was set from the VTEP.

4.1. OVS 173

Open vSwitch, Release 2.9.4

Similarly, when a tunneled packet enters the OVS from the external port bound to the internal port (VTEP), and if yes,
we short circuit the path, and directly forward the inner packet to the destination port (mostly a VIF, but dictated by
the flow). We leverage the Windows Filtering Platform (WFP) framework to be able to receive tunneled packets that
cannot be decapsulated by OVS right away. Currently, fragmented IP packets fall into that category, and we leverage
the code in the host IP stack to reassemble the packet, and performing decapsulation on the reassembled packet.

We’ll also be using the IP helper library to provide us IP address and other information corresponding to the Internal
port.

Event Notifications

The pseudo device interface described above is also used for providing event notifications back to OVS userspace. A
shared memory/overlapped IO model is used.

Userspace Components

The userspace portion of the OVS solution is mostly POSIX code, and not very Linux specific. Majority of the
userspace code does not interface directly with the kernel datapath and was ported independently of the kernel datapath
effort.

In this section, we cover the userspace components that interface with the kernel datapath.

As explained earlier, OVS on Hyper-V shares the DPIF provider implementation with Linux. The DPIF provider on
Linux uses netlink sockets and netlink messages. Netlink sockets and messages are extensively used on Linux to
exchange information between userspace and kernel. In order to satisfy these dependencies, netlink socket (pseudo
and non-native) and netlink messages are implemented on Hyper-V.

The following are the major advantages of sharing DPIF provider code:
1. Maintenance is simpler:

Any change made to the interface defined in dpif-provider.h need not be propagated to multiple implementations.
Also, developers familiar with the Linux implementation of the DPIF provider can easily ramp on the Hyper-V
implementation as well.

2. Netlink messages provides inherent advantages:

Netlink messages are known for their extensibility. Each message is versioned, so the provided data structures
offer a mechanism to perform version checking and forward/backward compatibility with the kernel module.

Netlink Sockets

As explained in other sections, an emulation of netlink sockets has been implemented in 1ib/netlink-socket.c
for Windows. The implementation creates a handle to the OVS pseudo device, and emulates netlink socket semantics
of receive message, send message, dump, and transact. Most of the n1_ * functions are supported.

The fact that the implementation is non-native manifests in various ways. One example is that PID for the netlink
socket is not automatically assigned in userspace when a handle is created to the OVS pseudo device. There’s an extra
command (defined in OvsDpInterfaceExt . h) thatis used to grab the PID generated in the kernel.

DPIF Provider

As has been mentioned in earlier sections, the netlink socket and netlink message based DPIF provider on Linux has
been ported to Windows.

174 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

Most of the code is common. Some divergence is in the code to receive packets. The Linux implementation uses
epoll()’ which is not natively supported on Windows.

netdev-windows

We have a Windows implementation of the interface defined in 1ib/netdev-provider.h. The implementation
provides functionality to get extended information about an interface. It is limited in functionality compared to the
Linux implementation of the netdev provider and cannot be used to add any interfaces in the kernel such as a tap in-
terface or to send/receive packets. The netdev-windows implementation uses the datapath interface extensions defined
indatapath-windows/include/OvsDpInterfaceExt.h.

Powershell Extensions to Set OvS-port-name

As explained in the section on “Port management”, each Hyper-V port has a ‘FriendlyName’ field, which we call as the
“OVS-port-name” field. We have implemented powershell command extensions to be able to set the “OVS-port-name”
of a Hyper-V port.

Kernel-Userspace Interface

openvswitch.h and OvsDplnterfaceExt.h

Since the DPIF provider is shared with Linux, the kernel datapath provides the same interface as the Linux datapath.
The interface is defined in datapath/linux/compat/include/linux/openvswitch.h. Derivatives of
this interface file are created during OVS userspace compilation. The derivative for the kernel datapath on Hyper-V is
provided in datapath-windows/include/OvsDpInterface.h.

That said, there are Windows specific extensions that are defined in the interface file datapath-windows/
include/OvsDpInterfaceExt.h.

Flow of a Packet

Figure 2 shows the numbered steps in which a packets gets sent out of a VIF and is forwarded to another VIF or a
physical NIC. As mentioned earlier, each VIF is attached to the switch via a port, and each port is both on the ingress
and egress path of the switch, and depending on whether a packet is being transmitted or received, one of the paths
gets used. In the figure, each step n is annotated as #n

The steps are as follows:
1. When a packet is sent out of a VIF or an physical NIC or an internal port, the packet is part of the ingress path.
2. The OVS kernel driver gets to intercept this packet.
(a) OVS looks up the flows in the flowtable for this packet, and executes the corresponding action.

(b) If there is not action, the packet is sent up to OVS userspace to examine the packet and figure out the
actions.

(c) Userspace executes the packet by specifying the actions, and might also insert a flow for such a packet in
the future.

(d) The destination ports are added to the packet and sent down to the Hyper- V switch.

9 epoll https://en.wikipedia.org/wiki/Epoll

4.1. OVS 175

https://en.wikipedia.org/wiki/Epoll

Open vSwitch, Release 2.9.4

3. The Hyper-V forwards the packet to the destination ports specified in the packet, and sends it out on the egress
path.

4. The packet gets forwarded to the destination VIF.

5. It might also get forwarded to a physical NIC as well, if the physical NIC has been added as a destination port
by OVS.

Build/Deployment

The userspace components added as part of OVS Windows implementation have been integrated with autoconf, and
can be built using the steps mentioned in the BUILD.Windows file. Additional targets need to be specified to make.

The OVS kernel code is part of a Visual Studio 2013 solution, and is compiled from the IDE. There are plans in the
future to move this to a compilation mode such that we can compile it without an IDE as well.

Once compiled, we have an install script that can be used to load the kernel driver.

References

4.1.10 Language Bindings

Bindings exist for Open vSwitch in a variety of languages.
Official Bindings

Python

The Python bindings are part of the Open vSwitch package. You can install the bindings using pip:

$ pip install ovs

Third-Party Bindings

Lua
e LJIT2ovs: LuaJIT binding for Open vSwitch
Go
* go-odp: A Go library to control the Open vSwitch in-kernel datapath

4.1.11 Testing

It is possible to test Open vSwitch using both tooling provided with Open vSwitch and using a variety of third party
tooling.

176 Chapter 4. Deep Dive

https://github.com/openvswitch/ovs/tree/master/python/ovs
https://github.com/wiladams/LJIT2ovs
https://github.com/weaveworks/go-odp

Open vSwitch, Release 2.9.4

Built-in Tooling

Open vSwitch provides a number of different test suites and other tooling for validating basic functionality of OVS.
Before running any of the tests described here, you must bootstrap, configure and build Open vSwitch as described in
Open vSwitch on Linux, FreeBSD and NetBSD. You do not need to install Open vSwitch or to build or load the kernel
module to run these test suites. You do not need supervisor privilege to run these test suites.

Unit Tests

Open vSwitch includes a suite of self-tests. Before you submit patches upstream, we advise that you run the tests and
ensure that they pass. If you add new features to Open vSwitch, then adding tests for those features will ensure your
features don’t break as developers modify other areas of Open vSwitch.

To run all the unit tests in Open vSwitch, one at a time, run:

’$ make check

This takes under 5 minutes on a modern desktop system.

To run all the unit tests in Open vSwitch in parallel, run:

’$ make check TESTSUITEFLAGS=-]8

You can run up to eight threads. This takes under a minute on a modern 4-core desktop system.

To see a list of all the available tests, run:

’$ make check TESTSUITEFLAGS=--list

To run only a subset of tests, e.g. test 123 and tests 477 through 484, run:

’$ make check TESTSUITEFLAGS='123 477-484"

Tests do not have inter-dependencies, so you may run any subset.

To run tests matching a keyword, e.g. ovsdb, run:

’$ make check TESTSUITEFLAGS='-k ovsdb'

To see a complete list of test options, run:

’$ make check TESTSUITEFLAGS=--help

The results of a testing run are reported in tests/testsuite. log. Report report test failures as bugs and include
the testsuite. log in your report.

Note: Sometimes a few tests may fail on some runs but not others. This is usually a bug in the testsuite, not a
bug in Open vSwitch itself. If you find that a test fails intermittently, please report it, since the developers may not
have noticed. You can make the testsuite automatically rerun tests that fail, by adding RECHECK=yes to the make
command line, e.g.:

$ make check TESTSUITEFLAGS=-j8 RECHECK=yes

4.1. OVS 177

Open vSwitch, Release 2.9.4

Coverage

If the build was configured with ——enable-coverage and the 1cov utility is installed, you can run the testsuite
and generate a code coverage report by using the check—-1cov target:

’$ make check-lcov

All the same options are avaiable via TESTSUITEFLAGS. For example:

’$ make check-lcov TESTSUITEFLAGS='-j8 -k ovn'

Valgrind

If you have valgrind installed, you can run the testsuite under valgrind by using the check-valgrind target:

$ make check-valgrind

When you do this, the “valgrind” results for test <N> are reported in files named tests/testsuite.dir/<N>/
valgrind. *.

To test the testsuite of kernel datapath under valgrind, you can use the check—kernel-valgrind target and find
the “valgrind” results under directory tests/system-kmod-testsuite.dir/.

All the same options are available via TESTSUITEFLAGS.

Hint: You may find that the valgrind results are easier to interpret if you put —q in ~/.valgrindrc, since that
reduces the amount of output.

OFTest

OFTest is an OpenFlow protocol testing suite. Open vSwitch includes a Makefile target to run OFTest with Open
vSwitch in “dummy mode”. In this mode of testing, no packets travel across physical or virtual networks. Instead,
Unix domain sockets stand in as simulated networks. This simulation is imperfect, but it is much easier to set up, does
not require extra physical or virtual hardware, and does not require supervisor privileges.

To run OFTest with Open vSwitch, you must obtain a copy of OFTest and install its prerequisites. You need a copy of
OFTest that includes commit 406614846¢5 (make ovs-dummy platform work again). This commit was merged into
the OFTest repository on Feb 1, 2013, so any copy of OFTest more recent than that should work. Testing OVS in
dummy mode does not require root privilege, so you may ignore that requirement.

Optionally, add the top-level OFTest directory (containing the oft program) to your $SPATH. This slightly simplifies
running OFTest later.

To run OFTest in dummy mode, run the following command from your Open vSwitch build directory:

$ make check-oftest OFT=<oft-binary>

where <oft-binary> is the absolute path to the oft program in OFTest. If you added “oft” to your $PATH, you
may omit the OFT variable assignment

By default, check-oftest passes oft just enough options to enable dummy mode. You can use OF TFLAGS to
pass additional options. For example, to run just the basic.Echo test instead of all tests (the default) and enable
verbose logging, run:

178 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

’$ make check-oftest OFT=<oft-binary> OFTFLAGS='--verbose -T basic.Echo'

If you use OFTest that does not include commit 4d1f3eb2c792 (oft: change default port to 6653), merged into the
OFTest repository in October 2013, then you need to add an option to use the IETF-assigned controller port:

’$ make check-oftest OFT=<oft-binary> OFTFLAGS='--port=6653"

Interpret OF Test results cautiously. Open vSwitch can fail a given test in OFTest for many reasons, including bugs in
Open vSwitch, bugs in OFTest, bugs in the “dummy mode” integration, and differing interpretations of the OpenFlow
standard and other standards.

Note: Open vSwitch has not been validated against OFTest. Report test failures that you believe to represent bugs in
Open vSwitch. Include the precise versions of Open vSwitch and OFTest in your bug report, plus any other information
needed to reproduce the problem.

Ryu

Ryu is an OpenFlow controller written in Python that includes an extensive OpenFlow testsuite. Open vSwitch includes
a Makefile target to run Ryu in “dummy mode”. See OFTest above for an explanation of dummy mode.

To run Ryu tests with Open vSwitch, first read and follow the instructions under Testing above. Second, obtain a copy
of Ryu, install its prerequisites, and build it. You do not need to install Ryu (some of the tests do not get installed, so
it does not help).

To run Ryu tests, run the following command from your Open vSwitch build directory:

$ make check-ryu RYUDIR=<ryu-source-dir>

where <ryu-source-dir> is the absolute path to the root of the Ryu source distribution. The default
<ryu-source-dir>is $srcdir/../ryu where $srcdir is your Open vSwitch source directory. If this is
correct, omit RYUDIR

Note: Open vSwitch has not been validated against Ryu. Report test failures that you believe to represent bugs in
Open vSwitch. Include the precise versions of Open vSwitch and Ryu in your bug report, plus any other information
needed to reproduce the problem.

Datapath testing

Open vSwitch includes a suite of tests specifically for datapath functionality, which can be run against the userspace
or kernel datapaths. If you are developing datapath features, it is recommended that you use these tests and build upon
them to verify your implementation.

The datapath tests make some assumptions about the environment. They must be run under root privileges on a Linux
system with support for network namespaces. For ease of use, the OVS source tree includes a vagrant box to invoke
these tests. Running the tests inside Vagrant provides kernel isolation, protecting your development host from kernel
panics or configuration conflicts in the testsuite. If you wish to run the tests without using the vagrant box, there are
further instructions below.

4.1. OVS 179

Open vSwitch, Release 2.9.4

Vagrant

Important: Requires Vagrant (version 1.7.0 or later) and a compatible hypervisor

Note: You must bootstrap and configure the sources (see doc:/intro/install/general) before you run the steps described
here.

A Vagrantfile is provided allowing to compile and provision the source tree as found locally in a virtual machine using
the following command:

$ vagrant up

This will bring up a Fedora 23 VM by default. If you wish to use a different box or a vagrant backend not supported
by the default box, the Vagrant £ile can be modified to use a different box as base.

The VM can be reprovisioned at any time:

$ vagrant provision

OVS out-of-tree compilation environment can be set up with:

$./boot.sh
$ vagrant provision —--provision-with configure_ovs,build_ovs

This will set up an out-of-tree build environment inside the VM in /root /build. The source code can be found in
/vagrant.

To recompile and reinstall OVS in the VM using RPM:

$./boot.sh
$ vagrant provision —--provision-with configure_ovs, install_rpm

Two provisioners are included to run system tests with the OVS kernel module or with a userspace datapath. This tests
are different from the self-tests mentioned above. To run them:

$./boot.sh
$ vagrant provision --provision-with \
configure_ovs, test_ovs_kmod, test_ovs_system_userspace

The results of the testsuite reside in the VM root user’s home directory:

vagrant ssh

sudo -s

cd /root/build
1s tests/systemx

v r U

Native

The datapath testsuite as invoked by Vagrant above may also be run manually on a Linux system with root privileges.
Make sure, no other Open vSwitch instance is running on the test suite. These tests may take several minutes to
complete, and cannot be run in parallel.

180 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

Userspace datapath

To invoke the datapath testsuite with the userspace datapath, run:

$ make check-system-userspace

The results of the testsuite are in tests/system—-userspace-testsuite.dir.

Kernel datapath

Make targets are also provided for testing the Linux kernel module. Note that these tests operate by inserting modules
into the running Linux kernel, so if the tests are able to trigger a bug in the OVS kernel module or in the upstream
kernel then the kernel may panic.

To run the testsuite against the kernel module which is currently installed on your system, run:

’$ make check-kernel

To install the kernel module from the current build directory and run the testsuite against that kernel module:

’$ make check-kmod

The results of the testsuite are in tests/system-kmod-testsuite.dir.

Static Code Analysis

Static Analysis is a method of debugging Software by examining code rather than actually executing it. This can
be done through ‘scan-build’ commandline utility which internally uses clang (or) gcc to compile the code and also
invokes a static analyzer to do the code analysis. At the end of the build, the reports are aggregated in to a common
folder and can later be analyzed using ‘scan-view’.

Open vSwitch includes a Makefile target to trigger static code analysis:

./boot.sh

./configure CC=clang # clang

or

./configure CC=gcc CFLAGS="-std=gnu99" # gcc
make clang-analyze

Ly 0 FH= A

You should invoke scan-view to view analysis results. The last line of output from clang—analyze will list the
command (containing results directory) that you should invoke to view the results on a browser.

Continuous Integration with Travis Cl

A .travis.yml file is provided to automatically build Open vSwitch with various build configurations and run the
testsuite using Travis CI. Builds will be performed with gcc, sparse and clang with the -Werror compiler flag included,
therefore the build will fail if a new warning has been introduced.

The CI build is triggered via git push (regardless of the specific branch) or pull request against any Open vSwitch
GitHub repository that is linked to travis-ci.

Instructions to setup travis-ci for your GitHub repository:

1. Go to https://travis-ci.org/ and sign in using your GitHub ID.

4.1. OVS 181

https://travis-ci.org/

Open vSwitch, Release 2.9.4

2. Go to the “Repositories” tab and enable the ovs repository. You may disable builds for pushes or pull requests.

3. In order to avoid forks sending build failures to the upstream mailing list, the notification email recipient is
encrypted. If you want to receive email notification for build failures, replace the the encrypted string:

(a) Install the travis-ci CLI (Requires ruby >=2.0): gem install travis
(b) In your Open vSwitch repository: travis encrypt mylist@mydomain.org

(c) Add/replace the notifications section in .travis.yml and fill in the secure string as returned by travis encrypt:

notifications:
email:
recipients:
- secure: "..... "

Note: You may remove/omit the notifications section to fall back to default notification behaviour which
is to send an email directly to the author and committer of the failing commit. Note that the email is only
sent if the author/committer have commit rights for the particular GitHub repository.

4. Pushing a commit to the repository which breaks the build or the testsuite will now trigger a email sent to
mylist@mydomain.org

vsperf

The vsperf project aims to develop a vSwitch test framework that can be used to validate the suitability of different
vSwitch implementations in a telco deployment environment. More information can be found on the OPNFV wiki.

4.1.12 Tracing packets inside Open vSwitch

Open vSwitch (OVS) is a programmable software switch that can execute actions at per packet level. This docu-
ment explains how to use the tracing tool to know what is happening with packets as they go through the data plane
processing.

The ovs-vswitchd(8) manpage describes basic usage of the ofproto/trace command used for tracing in Open vSwitch.
For a tool with a goal similar to ofproto/trace for tracing packets through OVN logical switches, see ovn-trace(8).

Packet Tracing

In order to understand the tool, let’s use the following flows as an example:

table=3,ip, tcp, tcp_dst=80,action=output:2
table=2,1ip,tcp,tcp_dst=22,action=output:1
table=0,in_port=3,ip,nw_src=192.0.2.0/24,action=resubmit (,2)
table=0,1in_port=3,ip,nw_src=198.51.100.0/24,action=resubmit (, 3)

Note: If you can’t use a “real” OVS setup you can use ovs-sandbox, as described in Open vSwitch Advanced
Features, which also provides additional tracing examples.

The first line adds a rule in table 3 matching on TCP/IP packet with destination port 80 (HTTP). If a packet matches,
the action is to output the packet on OpenFlow port 2.

182 Chapter 4. Deep Dive

mailto:mylist@mydomain.org
mailto:mylist@mydomain.org
https://wiki.opnfv.org/display/vsperf/VSperf+Home
http://openvswitch.org/support/dist-docs/ovs-vswitchd.8.html
http://openvswitch.org/support/dist-docs/ovn-trace.8.html

Open vSwitch, Release 2.9.4

The second line is similar but matches on destination port 22. If a packet matches, the action is to output the packet
on OpenFlow port 1.

The next two lines matches on source IP addresses. If there is a match, the packet is submitted to table indicated as
parameter to the resubmit() action.

Now let’s see if a packet from IP address 192.0.2.1 and destination port 22 would really go to OpenFlow port 1:

$ ovs—appctl ofproto/trace br0 in_port=3,tcp,nw_src=192.0.2.2,tcp_dst=22

Flow: tcp,in_port=3,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:00:00,
—nw_src=192.0.2.2,nw_dst=0.0.0.0,nw_tos=0,nw_ecn=0,nw_ttl1=0,tp_src=0,tp_dst=22,tcp_
—~flags=0

bridge ("br0O")
0. ip,in_port=3,nw_src=192.0.2.0/24, priority 32768
resubmit (, 2)
2. tcp,tp_dst=22, priority 32768
output:1

Final flow: unchanged
Megaflow: recirc_id=0,tcp,in_port=3,nw_src=192.0.2.0/24,nw_frag=no, tp_dst=22
Datapath actions: 1

The first line is the trace command. The br0Q is the bridge where the packet is going through. The next arguments
describe the packet itself. For instance, the nw_src matches with the IP source address. All the packet fields are well
documented in the ovs-fields(7) man-page.

The second line shows the flow extracted from the packet described in the command line. Unspecified packet fields
are zeroed.

The second group of lines shows the packet’s trip through bridge br0. We see, in table 0, the OpenFlow flow that
the fields matched, along with its priority, followed by its actions, one per line. In this case, we see that this packet
matches the flow that resubmit those packets to table 2. The “resubmit” causes a second lookup in OpenFlow table 2,
described by the block of text that starts with “2.”. In the second lookup we see that this packet matches the rule that
outputs those packets to OpenFlow port #1.

In summary, it is possible to follow the flow entries and actions until the final decision is made. At the end, the trace
tool shows the Megaflow which matches on all relevant fields followed by the data path actions.

Let’s see what happens with the same packet but with another TCP destination port:

$ ovs—appctl ofproto/trace br0 in_port=3,tcp,nw_src=192.0.2.2,tcp_dst=80

Flow: tcp,in_port=3,vlan_tci=0x0000,dl_src=00:00:00:00:00:00,d1_dst=00:00:00:00:00:00,
—nw_src=192.0.2.2,nw_dst=0.0.0.0,nw_tos=0,nw_ecn=0,nw_tt1=0,tp_src=0,tp_dst=80,tcp_
—flags=0

bridge ("br0")
0. ip,in_port=3,nw_src=192.0.2.0/24, priority 32768
resubmit (, 2)
2. No match.
drop

Final flow: unchanged
Megaflow: recirc_id=0,tcp, in_port=3,nw_src=192.0.2.0/24,nw_frag=no, tp_dst=0x40/0xffc0
Datapath actions: drop

In the second group of lines, in table 0, you can see that the packet matches with the rule because of the source IP
address, so it is resubmitted to the table 2 as before. However, it doesn’t match any rule there. When the packet doesn’t

4.1. OVS 183

http://openvswitch.org/support/dist-docs/ovs-fields.7.pdf

Open vSwitch, Release 2.9.4

match any rule in the flow tables, it is called a table miss. The virtual switch table miss behavior can be configured
and it depends on the OpenFlow version being used. In this example the default action was to drop the packet.

Credits

This document is heavily based on content from Flavio Bruno Leitner at Red Hat:

* https://developers.redhat.com/blog/2016/10/12/tracing-packets-inside-open-vswitch/

4.1.13 C IDL Compound Indexes

Introduction
This document describes the design and usage of the C IDL Compound Indexes feature, which allows OVSDB client
applications to efficiently search table contents using arbitrary sets of column values in a generic way.

This feature is implemented entirely in the client IDL, requiring no changes to the OVSDB Server, OVSDB Protocol
(OVSDB RFC (RFC 7047)) or additional interaction with the OVSDB server.

Please note that in this document, the term “index” refers to the common database term defined as “a data structure
that facilitates data retrieval”. Unless stated otherwise, the definition for index from the OVSDB RFC (RFC 7047) is
not used.

Typical Use Cases

Fast lookups

Depending on the topology, the route table of a network device could manage thousands of routes. Commands such
as “show ip route <specific route>" would need to do a sequential lookup of the routing table to find the specific route.
With an index created, the lookup time could be faster.

This same scenario could be applied to other features such as Access List rules and even interfaces lists.

Lexicographic order

There are a number of cases in which retrieving data in a particular lexicographic order is needed. For example, SNMP.
When an administrator or even a NMS would like to retrieve data from a specific device, it’s possible that they will
request data from full tables instead of just specific values. Also, they would like to have this information displayed
in lexicographic order. This operation could be done by the SNMP daemon or by the CLI, but it would be better if the
database could provide the data ready for consumption. Also, duplicate efforts by different processes will be avoided.
Another use case for requesting data in lexicographic order is for user interfaces (web or CLI) where it would be better
and quicker if the DB sends the data sorted instead of letting each process to sort the data by itself.

Implementation Design

This feature maintains a collection of indexes per table. The application can create any number of indexes per table.
An index can be defined over any number of columns, and supports the following options:
* Add a column with type string, boolean, uuid, integer or real (using default comparators).

* Select ordering direction of a column (ascending or descending, must be selected when creating the index).

184 Chapter 4. Deep Dive

https://developers.redhat.com/blog/2016/10/12/tracing-packets-inside-open-vswitch/

Open vSwitch, Release 2.9.4

 Use a custom ordering comparator (eg: treat a string column like a IP, or sort by the value of the “config” key in
a map column).

For querying the index the user needs to create a cursor. That cursor points to a position in the index. The user can
then use the cursor to perform lookups (by key) and/or get the subsequent rows. The user can also compare the current
value of the cursor to a record.

For lookups, the user needs to provide a key to be used for locating the specific rows that meet his criteria. This key
could be an IP address, a MAC address, an ACL rule, etc. When the information is found in the data structure the
user’s cursor is updated to point to the row. If several rows match the query then the user can easily get the next row
in sequence by updating the cursor.

For accessing data in lexicographic order, the user can use the ranged iterators. Those iterators need a cursor and
“from” and “to” values to define a range.

The indexes maintain a pointer to the row in the local replica, avoiding the need to make additional copies of the data
and thereby minimizing any additional memory and CPU overhead for their maintenance. It is intended that creating
and maintaining indexes should be very cheap.

Another potential issue is the time needed to create the data structure and the time needed to add/remove elements.
The indexes are always synchronized with the replica. For this reason is VERY IMPORTANT that the comparison
functions (built-in and user provided) are FAST.

Skiplists are used as the primary data structure for the implementation of indexes. Indexes therefore have an expected
O (log (n)) cost when inserting, deleting or modifiying a row, O (1og (n)) when retrieving a row by key, and O(1)
when retrieving the first or next row.

Indexes are maintained incrementally in the replica as notifications of database changes are received from the OVSDB
server, as shown in the following diagram.

e +
\ \
- +Client changes to data IDL |
| \ \
t———v——r \ \
| OVSDB +—-———————— >0VSDB Notification |
o + | + |
\ \ L + \
\ \ | \ \
| | | Insert Row +-———> Insert row to indexes |
\ \ \ \ ~ \
\ +=> | Modify Row +-——————————————————— + \
\ | \ \4 \
| | Delete Row +-——-> Delete row from indexes |
\ | \ \
| ot + |
\ \ \
| +—> IDL Replica \
\ \
e +
C IDL API

Index Creation

Each index must be created with the function ovsdb_idl_create_index (). After an index has been created
the user can add one or more columns to it, using ovsdb_idl_index_add_column. All indexes must be created
wiith all columns added BEFORE the first call to ovsdb_idl_run().

4.1. OVS 185

Open vSwitch, Release 2.9.4

Index Creation Example

/+ Define a custom comparator for the column "stringField" in table

x "Test". (Note that custom comparison functions are not often
* necessary.)
*/

int stringField_comparator (const void =*a, const void =xb)
{

struct ovsrec_test »AAA, *BBB;

AAA = (struct ovsrec_test *)aj;

BBB = (struct ovsrec_test *)Db;

return strcmp (AAA->stringField, BBB->stringField);

void init_idl (struct ovsdb_idl x%, char *remote)

{
/+ Add the columns to the IDL =/
+1dl = ovsdb_idl_create (remote, &ovsrec_idl_class, false, true);
ovsdb_idl_add_table (xidl, &ovsrec_table_test);
ovsdb_idl_add_column (xidl, &ovsrec_test_col_stringField);
ovsdb_idl_add_column (xidl, &ovsrec_test_col_numericField);
ovsdb_idl_add_column (xidl, &ovsrec_test_col_enumField);
ovsdb_idl_add_column (xidl, &ovsrec_test_col_boolField);

/* Create an index.
x This index is created using (stringField, numericField) as key.
* Also shows the usage of some arguments of add column, although
x for a string column it is unnecesary to pass a custom comparator.
*/
struct ovsdb_idl_index xindex;
index = ovsdb_idl_create_index (*idl, &ovsrec_table_test,
"by_stringField");
ovsdb_idl_index_add_column (index, &ovsrec_test_col_stringField,
OVSDB_INDEX_ASC, stringField_comparator);
ovsdb_idl_index_add_column (index, &ovsrec_test_col_numericField,
OVSDB_INDEX_DESC, NULL);
/+ Done. =/

Index Usage

Ilterators

The recommended way to do queries is using a “ranged foreach”, an “equal foreach” or a “full foreach” over an index.
The mechanism works as follows:

1. Create a cursor.

2. Create index row objects with index columns set to desired search key values (one is needed for equality iterators,
two for range iterators, a search key is not needed for the full index iterator).

3. Pass the cursor, an iteration variable, and the key values to the iterator.
4. Use the values within iterator loop.

To create the cursor for the example, we use the following code:

186 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

ovsdb_idl_index_cursor my_cursor;
ovsdb_idl_initialize_cursor(idl, &ovsrec_table_test, "by_ stringField",
&my_cursor) ;

Now the cursor can be used to perform queries. The library implements three different iterators: a range iterator, an
equality iterator and a full index iterator. The range iterator receives two values and iterates over all rows with values
that are within that range (inclusive of the two values defining the range). The equality iterator iterates over all rows
that exactly match the value passed. The full index iterator iterates over all rows in the index, in an order determined
by the comparison function and configured direction (ascending or descending).

Note that indexes are sorted by the “concatenation” of the values in all indexed columns, so the ranged iterator returns
all the values between “from.coll from.col2 ... from.coln” and “to.coll to.col2 ... to.coln”, NOT the rows with a
value in column 1 between from.coll and to.coll, and so on.

The iterators are macros especific to each table. An example of the use these iterators follows:

/ *
x Equality iterator; iterates over all the records equal to "value".
x/
ovsrec_test *value, +*record;
value = ovsrec_test_index_init_row(idl, &ovsrec_table_test);
ovsrec_test_index_set_stringField(value, "hello world");
OVSREC_TEST_FOR_EACH_EQUAL (record, &my_cursor, value) {
/+ Can return zero, one or more records =/
assert (strcmp (record->stringField, "hello world") == 0);

printf ("Found one record with , record->stringField);

}

ovsrec_test_index_destroy_row(value);

/ %
* Range iterator; iterates over all records between two values
+ (inclusive) .
*/
ovsrec_test *value_from, =*value_to;
value_from = ovsrec_test_index_init_row(idl, &ovsrec_table_test);
value_to = ovsrec_test_index_init_row(idl, &ovsrec_table_test);

ovsrec_test_index_set_stringField(value_from, "aaa");
ovsrec_test_index_set_stringField(value_to, "mmm");
OVSREC_TEST_FOR_EACH_RANGE (record, &my_cursor, value_from, value_to) {
/+ Can return zero, one or more records =/
assert (strcmp ("aaa", record->stringField) <= 0);
assert (strcmp (record->stringField, "mmm") <= 0);
printf ("Found one record with ", record->stringField);
}
ovsrec_test_index_destroy_row(value_from);
ovsrec_test_index_destroy_row(value_to);

/ *
+ Index iterator; iterates over all nodes in the index, in order
x determined by comparison function and configured order (ascending
* or descending) .
*/
OVSREC_TEST_FOR_EACH_BYINDEX (record, &my_cursor) {
/* Can return zero, one or more records =/
printf ("Found one record with ", record->stringField);

4.1. OVS 187

Open vSwitch, Release 2.9.4

General Index Access

While the currently defined iterators are suitable for many use cases, it is also possible to create custom iterators using
the more general API on which the existing iterators have been built. This API includes the following functions,
declared in “lib/ovsdb-idl.h”:

1. ovsrec_<table>_index_compare ()
ovsrec_<table> index_next ()
ovsrec_<table>_ index_find()

ovsrec_<table>_index_ forward_to()

A

ovsrec_<table>_index_get_data()

4.2 OVN

4.2.1 OVN Gateway High Availability Plan

OVN Gateway

- N ——— +
\
\
- +
\ \
| Gateway |
- +
\
\
+t-—-— V-—— === +

The OVN gateway is responsible for shuffling traffic between the tunneled overlay network (governed by ovn-northd),
and the legacy physical network. In a naive implementation, the gateway is a single x86 server, or hardware VTEP. For
most deployments, a single system has enough forwarding capacity to service the entire virtualized network, however,
it introduces a single point of failure. If this system dies, the entire OVN deployment becomes unavailable. To mitigate
this risk, an HA solution is critical — by spreading responsibility across multiple systems, no single server failure can
take down the network.

An HA solution is both critical to the manageability of the system, and extremely difficult to get right. The purpose of
this document, is to propose a plan for OVN Gateway High Availability which takes into account our past experience
building similar systems. It should be considered a fluid changing proposal, not a set-in-stone decree.

Note: This document describes a range of options OVN could take to provide high availability for gateways. The

188 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

current implementation provides L3 gateway high availability by the “Router Specific Active/Backup” approach de-
scribed in this document.

Basic Architecture

In an OVN deployment, the set of hypervisors and network elements operating under the guidance of ovn-northd are
in what’s called “logical space”. These servers use VXLAN, STT, or Geneve to communicate, oblivious to the details
of the underlying physical network. When these systems need to communicate with legacy networks, traffic must be
routed through a Gateway which translates from OVN controlled tunnel traffic, to raw physical network traffic.

Since the gateway is typically the only system with a connection to the physical network all traffic between logical
space and the WAN must travel through it. This makes it a critical single point of failure — if the gateway dies,
communication with the WAN ceases for all systems in logical space.

To mitigate this risk, multiple gateways should be run in a “High Availability Cluster” or “HA Cluster”. The HA cluster
will be responsible for performing the duties of a gateways, while being able to recover gracefully from individual

member failures.

OVN Gateway HA Cluster

\
\
\
| +—————— + + +
[\ \ \ \ \
| | Gateway | | Gateway | | Gateway |
[\
| +4————————————— + + +
f———————————— e +
\
|
+--— V-———————————= +

L2 vs L3 High Availability

In order to achieve this goal, there are two broad approaches one can take. The HA cluster can appear to the network
like a giant Layer 2 Ethernet Switch, or like a giant IP Router. These approaches are called L2HA, and L3HA
respectively. L2HA allows ethernet broadcast domains to extend into logical space, a significant advantage, but this
comes at a cost. The need to avoid transient L2 loops during failover significantly complicates their design. On the
other hand, L3HA works for most use cases, is simpler, and fails more gracefully. For these reasons, it is suggested
that OVN supports an L3HA model, leaving L2HA for future work (or third party VTEP providers). Both models are

discussed further below.

4.2. OVN 189

Open vSwitch, Release 2.9.4

L3HA

In this section, we’ll work through a basic simple L3HA implementation, on top of which we’ll gradually build more
sophisticated features explaining their motivations and implementations as we go.

Naive active-backup

Let’s assume that there are a collection of logical routers which a tenant has asked for, our task is to schedule these
logical routers on one of N gateways, and gracefully redistribute the routers on gateways which have failed. The
absolute simplest way to achieve this is what we’ll call “naive-active-backup”.

Naive Active Backup HA Implementation

fom + fom +
| Leader \ | Backup \
\ \ \ \
\ A B C \ | \
\ \ \ \
fo— et ———++ Fofmm +

A \ \

(I \ \

[L o=t

+ + + + ovn-—northd |

Traffic +——-----—~ +

In a naive active-backup, one of the Gateways is chosen (arbitrarily) as a leader. All logical routers (A, B, C in the
figure), are scheduled on this leader gateway and all traffic flows through it. ovn-northd monitors this gateway via
OpenFlow echo requests (or some equivalent), and if the gateway dies, it recreates the routers on one of the backups.

This approach basically works in most cases and should likely be the starting point for OVN — it’s strictly better than
no HA solution and is a good foundation for more sophisticated solutions. That said, it’s not without it’s limitations.
Specifically, this approach doesn’t coordinate with the physical network to minimize disruption during failures, and it
tightly couples failover to ovn-northd (we’ll discuss why this is bad in a bit), and wastes resources by leaving backup
gateways completely unutilized.

Router Failover

When ovn-northd notices the leader has died and decides to migrate routers to a backup gateway, the physical network
has to be notified to direct traffic to the new gateway. Otherwise, traffic could be blackholed for longer than necessary
making failovers worse than they need to be.

For now, let’s assume that OVN requires all gateways to be on the same IP subnet on the physical network. If this isn’t
the case, gateways would need to participate in routing protocols to orchestrate failovers, something which is difficult
and out of scope of this document.

Since all gateways are on the same IP subnet, we simply need to worry about updating the MAC learning tables of the
Ethernet switches on that subnet. Presumably, they all have entries for each logical router pointing to the old leader. If
these entries aren’t updated, all traffic will be sent to the (now defunct) old leader, instead of the new one.

In order to mitigate this issue, it’s recommended that the new gateway sends a Reverse ARP (RARP) onto the physical
network for each logical router it now controls. A Reverse ARP is a benign protocol used by many hypervisors when
virtual machines migrate to update L2 forwarding tables. In this case, the ethernet source address of the RARP is that
of the logical router it corresponds to, and its destination is the broadcast address. This causes the RARP to travel to
every L2 switch in the broadcast domain, updating forwarding tables accordingly. This strategy is recommended in

190 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

all failover mechanisms discussed in this document — when a router newly boots on a new leader, it should RARP its
MAC address.

Controller Independent Active-backup

Controller Independent Active-Backup Implementation

- + - +
| Leader \ | Backup \
\ \ \ \
\ A BC \ \ \
\ \ \ \
- + - +

[

[

+ + + +

Traffic

The fundamental problem with naive active-backup, is it tightly couples the failover solution to ovn-northd. This
can significantly increase downtime in the event of a failover as the (often already busy) ovn-northd controller has to
recompute state for the new leader. Worse, if ovn-northd goes down, we can’t perform gateway failover at all. This
violates the principle that control plane outages should have no impact on dataplane functionality.

In a controller independent active-backup configuration, ovn-northd is responsible for initial configuration while the
HA cluster is responsible for monitoring the leader, and failing over to a backup if necessary. ovn-northd sets HA
policy, but doesn’t actively participate when failovers occur.

Of course, in this model, ovn-northd is not without some responsibility. Its role is to pre-plan what should happen in
the event of a failure, leaving it to the individual switches to execute this plan. It does this by assigning each gateway
a unique leadership priority. Once assigned, it communicates this priority to each node it controls. Nodes use the
leadership priority to determine which gateway in the cluster is the active leader by using a simple metric: the leader
is the gateway that is healthy, with the highest priority. If that gateway goes down, leadership falls to the next highest
priority, and conversely, if a new gateway comes up with a higher priority, it takes over leadership.

Thus, in this model, leadership of the HA cluster is determined simply by the status of its members. Therefore if
we can communicate the status of each gateway to each transport node, they can individually figure out which is the
leader, and direct traffic accordingly.

Tunnel Monitoring

Since in this model leadership is determined exclusively by the health status of member gateways, a key problem is
how do we communicate this information to the relevant transport nodes. Luckily, we can do this fairly cheaply using
tunnel monitoring protocols like BFD.

The basic idea is pretty straightforward. Each transport node maintains a tunnel to every gateway in the HA cluster (not
just the leader). These tunnels are monitored using the BFD protocol to see which are alive. Given this information,
hypervisors can trivially compute the highest priority live gateway, and thus the leader.

In practice, this leadership computation can be performed trivially using the bundle or group action. Rather than using
OpenFlow to simply output to the leader, all gateways could be listed in an active-backup bundle action ordered by
their priority. The bundle action will automatically take into account the tunnel monitoring status to output the packet
to the highest priority live gateway.

4.2. OVN 191

Open vSwitch, Release 2.9.4

Inter-Gateway Monitoring

One somewhat subtle aspect of this model, is that failovers are not globally atomic. When a failover occurs, it will
take some time for all hypervisors to notice and adjust accordingly. Similarly, if a new high priority Gateway comes
up, it may take some time for all hypervisors to switch over to the new leader. In order to avoid confusing the physical
network, under these circumstances it’s important for the backup gateways to drop traffic they’ve received erroneously.
In order to do this, each Gateway must know whether or not it is, in fact active. This can be achieved by creating a
mesh of tunnels between gateways. Each gateway monitors the other gateways its cluster to determine which are alive,
and therefore whether or not that gateway happens to be the leader. If leading, the gateway forwards traffic normally,
otherwise it drops all traffic.

We should note that this method works well under the assumption that there are no inter-gateway connectivity failures,
in such case this method would fail to elect a single master. The simplest example is two gateways which stop seeing
each other but can still reach the hypervisors. Protocols like VRRP or CARP have the same issue. A mitigation for
this type of failure mode could be achieved by having all network elements (hypervisors and gateways) periodically
share their link status to other endpoints.

Gateway Leadership Resignation

Sometimes a gateway may be healthy, but still may not be suitable to lead the HA cluster. This could happen for
several reasons including:

* The physical network is unreachable
* BFD (or ping) has detected the next hop router is unreachable
* The Gateway recently booted and isn’t fully configured

In this case, the Gateway should resign leadership by holding its tunnels down wusing the
other_config:cpath_down flag. This indicates to participating hypervisors and Gateways that this gate-
way should be treated as if it’s down, even though its tunnels are still healthy.

Router Specific Active-Backup

Router Specific Active-Backup

o + o +
\ [\
\ A C [B D E |
\ [\
fom + o —— +

| \

[\

+ + + +

Traffic

Controller independent active-backup is a great advance over naive active-backup, but it still has one glaring problem
— it under-utilizes the backup gateways. In ideal scenario, all traffic would split evenly among the live set of gateways.
Getting all the way there is somewhat tricky, but as a step in the direction, one could use the “Router Specific Active-
Backup” algorithm. This algorithm looks a lot like active-backup on a per logical router basis, with one twist. It
chooses a different active Gateway for each logical router. Thus, in situations where there are several logical routers,
all with somewhat balanced load, this algorithm performs better.

192 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

Implementation of this strategy is quite straightforward if built on top of basic controller independent active-backup.
On a per logical router basis, the algorithm is the same, leadership is determined by the liveness of the gateways.
The key difference here is that the gateways must have a different leadership priority for each logical router. These
leadership priorities can be computed by ovn-northd just as they had been in the controller independent active-backup
model.

Once we have these per logical router priorities, they simply need be communicated to the members of the gateway
cluster and the hypervisors. The hypervisors in particular, need simply have an active-backup bundle action (or group
action) per logical router listing the gateways in priority order for that router, rather than having a single bundle action
shared for all the routers.

Additionally, the gateways need to be updated to take into account individual router priorities. Specifically, each
gateway should drop traffic of backup routers it’s running, and forward traffic of active gateways, instead of simply
dropping or forwarding everything. This should likely be done by having ovn-controller recompute OpenFlow for the
gateway, though other options exist.

The final complication is that ovn-northd’s logic must be updated to choose these per logical router leadership priorities
in a more sophisticated manner. It doesn’t matter much exactly what algorithm it chooses to do this, beyond that it
should provide good balancing in the common case. I.E. each logical routers priorities should be different enough that
routers balance to different gateways even when failures occur.

Preemption

In an active-backup setup, one issue that users will run into is that of gateway leader preemption. If a new Gateway is
added to a cluster, or for some reason an existing gateway is rebooted, we could end up in a situation where the newly
activated gateway has higher priority than any other in the HA cluster. In this case, as soon as that gateway appears, it
will preempt leadership from the currently active leader causing an unnecessary failover. Since failover can be quite
expensive, this preemption may be undesirable.

The controller can optionally avoid preemption by cleverly tweaking the leadership priorities. For each router, new
gateways should be assigned priorities that put them second in line or later when they eventually come up. Furthermore,
if a gateway goes down for a significant period of time, its old leadership priorities should be revoked and new ones
should be assigned as if it’s a brand new gateway. Note that this should only happen if a gateway has been down for a
while (several minutes), otherwise a flapping gateway could have wide ranging, unpredictable, consequences.

Note that preemption avoidance should be optional depending on the deployment. One necessarily sacrifices optimal
load balancing to satisfy these requirements as new gateways will get no traffic on boot. Thus, this feature represents
a trade-off which must be made on a per installation basis.

Fully Active-Active HA

Fully Active-Active HA

o + ofmm—————————— +
\ [\
| A B CDE [A B CDE \
\ [\
Fmm T +

[\

[\

+ + + +

Traffic

4.2. OVN 193

Open vSwitch, Release 2.9.4

The final step in L3HA is to have true active-active HA. In this scenario each router has an instance on each Gateway,
and a mechanism similar to ECMP is used to distribute traffic evenly among all instances. This mechanism would
require Gateways to participate in routing protocols with the physical network to attract traffic and alert of failures. It
is out of scope of this document, but may eventually be necessary.

L2HA

L2HA is very difficult to get right. Unlike L3HA, where the consequences of problems are minor, in L2HA if two
gateways are both transiently active, an L2 loop triggers and a broadcast storm results. In practice to get around
this, gateways end up implementing an overly conservative “when in doubt drop all traffic” policy, or they implement
something like MLAG.

MLAG has multiple gateways work together to pretend to be a single L2 switch with a large LACP bond. In principle,
it’s the right solution to the problem as it solves the broadcast storm problem, and has been deployed successfully in
other contexts. That said, it’s difficult to get right and not recommended.

4.2.2 Role Based Access Control

Where SSL provides authentication when connecting to an OVS database, role based access control (RBAC) provides
authorization to operations performed by clients connecting to an OVS database. RBAC allows for administrators to
restrict the database operations a client may perform and thus enhance the security already provided by SSL.

In theory, any OVS database could define RBAC roles and permissions, but at present only the OVN southbound
database has the appropriate tables defined to facilitate RBAC.

Mechanics
RBAC is intended to supplement SSL. In order to enable RBAC, the connection to the database must use SSL. Some
permissions in RBAC are granted based on the certificate common name (CN) of the connecting client.

RBAC is controlled with two database tables, RBAC_Role and RBAC_Permission. The RBAC_Permission table
contains records that describe a set of permissions for a given table in the database.

The RBAC_Permission table contains the following columns:

table The table in the database for which permissions are being described.
insert_delete Describes whether insertion and deletion of records is allowed.
update A list of columns that are allowed to be updated.

authorization A list of column names. One of the listed columns must match the SSL certificate CN in order for the
attempted operation on the table to succeed. If a key-value pair is provided, then the key is the column name,
and the value is the name of a key in that column. An empty string gives permission to all clients to perform
operations.

The RBAC_Role table contains the following columns:
name The name of the role being defined

permissions A list of key-value pairs. The key is the name of a table in the database, and the value is a UUID of a
record in the RBAC_Permission table that describes the permissions the role has for that table.

Note: All tables not explicitly referenced in an RBAC_Role record are read-only

194 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

In order to enable RBAC, specify the role name as an argument to the set-connection command for the database. As
an example, to enable the “ovn-controller” role on the OVN southbound database, use the following command:

$ ovn-sbctl set-connection role=ovn-controller ss1:192.168.0.1:6642

Pre-defined Roles

This section describes roles that have been defined internally by OVS/OVN.

ovn-controller

The ovn-controller role is specified in the OVN southbound database and is intended for use by hypervisors running
the ovn-controller daemon. ovn-controller connects to the OVN southbound database mostly to read information, but
there are a few cases where ovn-controller also needs to write. The ovn-controller role was designed to allow for ovn-
controllers to write to the southbound database only in places where it makes sense to do so. This way, if an intruder
were to take over a hypervisor running ovn-controller, it is more difficult to compromise the entire overlay network.

It is strongly recommended to set the ovn-controller role for the OVN southbound database to enhance security.

4.2.3 What’s New with OVS and OVN 2.8

This document is about what was added in Open vSwitch 2.8, which was released at the end of August 2017, con-
centrating on the new features in OVN. It also covers some of what is coming up in Open vSwitch and OVN 2.9,
which is due to be released in February 2018. OVN has many features, and this document does not cover every new
or enhanced feature (but contributions are welcome).

This document assumes a basic familiarity with Open vSwitch, OVN, and their associated tools. For more information,
please refer to the Open vSwitch and OVN documentation, such as the ovn—architecture(7) manpage.

Debugging and Troubleshooting

Before version 2.8, Open vSwitch command-line tools were far more painful to use than they needed to be. This
section covers the improvements made to the CLI in the 2.8 release.

User-Hostile UUIDs

The OVN CLI, through ovn-nbctl, ovn—nbctl, and ovn—-trace, used full-length UUIDs almost everywhere.
It didn’t even provide any assistance with completion, etc., which in practice meant always cutting and pasting UUIDs
from one command or window to another. This problem wasn’t limited to the places where one would expect to have
to see or use a UUID, either. In many places where one would expect to be able to use a network, router, or port name,
a UUID was required instead. In many places where one would want to see a name, the UUID was displayed instead.
More than anything else, these shortcomings made the CLI user-hostile.

There was an underlying problem that the southbound database didn’t actually contain all the information needed to
provide a decent user interface. In some cases, for example, the human-friendly names that one would want to use for
entities simply weren’t part of the database. These names weren’t necessary for correctness, only for usability.

OVN 2.8 eased many of these problems. Most parts of the CLI now allow the user to abbreviate UUIDs, as long as
the abbreviations are unique within the database. Some parts of the CLI where full-length UUIDs make output hard
to read now abbreviate them themselves. Perhaps more importantly, in many places the OVN CLI now displays and
accepts human-friendly names for networks, routers, ports, and other entities. In the places where the names were not
previously available, OVN (through ovn-northd) now copies the names into the southbound database.

4.2. OVN 195

Open vSwitch, Release 2.9.4

The CLIs for layers below OVN, at the OpenFlow and datapath layers with ovs—-ofctl and ovs—-dpctl, respec-
tively, had some similar problems in which numbers were used for entities that had human-friendly names. Open
vSwitch 2.8 also solves some of those problems. Other than that, the most notable enhancement in this area was the
-—-no-stats option to ovs-ofctl dump-flows, which made that command’s output more readable for the
cases where per-flow statistics were not interesting to the reader.

Connections Between Levels

OVN and Open vSwitch work almost like a stack of compilers: the OVN Neutron plugin translates Neu-
tron configuration into OVN northbound configuration, which ovn—-northd translates into logical flows, which
ovn-controller translates into OpenFlow flows, which ovs—vswitchd translates into datapath flows. For de-
bugging and troubleshooting it is often necessary to understand exactly how these translations work. The relationship
from a logical flow to its OpenFlow flows, or in the other direction, from an OpenFlow flow back to the logical flow
that produced it, was often of particular interest, but OVN didn’t provide good tools for the job.

OVN 2.8 added some new features that ease these jobs. ovn-sbctl 1flow-1ist has a new option ——ovs that
lists the OpenFlow flows on a particular chassis that were generated from the logical flows that it lists. ovn-trace
also added a similar ——ovs option that applies to the logical flows it traces.

In the other direction, OVN 2.8 added a new utility ovn—detrace that, given an Open vSwitch trace of OpenFlow
flows, annotates it with the logical flows that yielded those OpenFlow flows.

Distributed Firewall

OVN supports a distributed firewall with stateful connection tracking to ensure that only packets for established con-
nections, or those that the configuration explicitly allows, can ingress a given VM or container. Neutron uses this
feature by default. Most packets in an OpenStack environment pass through it twice, once after egress from the
packet’s source VM and once before ingress into its destination VM. Before OVN 2.8, the ovn—trace program,
which shows the path of a packet through an OVN logical network, did not support the logical firewall, which in
practice made it almost useless for Neutron.

In OVN 2.8, ovn-trace adds support for the logical firewall. By default it assumes that packets are part of an
established connection, which is usually what the user wants as part of the trace. It also accepts command-line options
to override that assumption, which allows the user to discover the treatment of packets that the firewall should drop.

At the next level deeper, prior to Open vSwitch 2.8, the OpenFlow tracing command ofproto/trace also supported
neither the connection tracking feature underlying the OVN distributed firewall nor the “recirculation” feature that
accompanied it. This meant that, even if the user tried to look deeper into the distributed firewall mechanism, he or
she would encounter a further roadblock. Open vSwitch 2.8 added support for both of these features as well.

Summary Display

ovn-nbctl showand ovn—-sbctl show, for showing an overview of the OVN configuration, didn’t show a lot
of important information. OVN adds some more useful information here.

DNS, and IPAM

OVN 2.8 adds a built-in DNS server designed for assigning names to VMs and containers within an OVN logical net-
work. DNS names are assigned using records in the OVN northbound database and, like other OVN features, translated
into logical flows at the OVN southbound layer. DNS requests directed to the OVN DNS server never leave the hyper-
visor from which the request is sent; instead, OVN processes and replies to the request from its ovn—-controller
local agent. The OVN DNS server is not a general-purpose DNS server and cannot be used for that purpose.

196 Chapter 4. Deep Dive

Open vSwitch, Release 2.9.4

OVN includes simple built-in support for IP address management (IPAM), in which OVN assigns IP addresses to VMs
or containers from a pool or pools of IP addresses delegated to it by the administrator. Before OVN 2.8, OVN IPAM
only supported IPv4 addresses; OVN 2.8 adds support for [Pv6. OVN 2.8 also enhances the address pool support to
allow specific addresses to be excluded. Neutron assigns IP addresses itself and does not use OVN IPAM.

High Availability

As a distributed system, in OVN a lot can go wrong. As OVN advances, it adds redundancy in places where currently a
single failure could disrupt the functioning of the system as a whole. OVN 2.8 adds two new kinds of high availability.

ovn-northd HA

The ovn-northd program sits between the OVN northbound and southbound databases and translates from a logical
network configuration into logical flows. If ovn—northd itself or the host on which it runs fails, then updates to the
OVN northbound configuration will not propagate to the hypervisors and the OVN configuration freezes in place until
ovn—-northd restarts.

OVN 2.8 adds support for active-backup HA to ovn—northd. When more than one ovn—northd instance runs, it
uses an OVSDB locking feature to automatically choose a single active instance. When that instance dies or becomes
nonresponsive, the OVSDB server automatically choose one of the remaining instance(s) to take over.

L3 Gateway HA

In OVN 2.8, multiple chassis may now be specified for L3 gateways. When more than one chassis is specified, OVN
manages high availability for that gateway. Each hypervisor uses the BFD protocol to keep track of the gateway nodes
that are currently up. At any given time, a hypervisor uses the highest-priority gateway node that is currently up.

ovsDB

The OVN architecture relies heavily on OVSDB, the Open vSwitch database, for hosting the northbound and south-
bound databases. OVSDB was originally selected for this purpose because it was already used in Open vSwitch
for configuring OVS itself and, thus, it was well integrated with OVS and well supported in C and Python, the two
languages that are used in Open vSwitch.

OVSDB was well designed for its original purpose of configuring Open vSwitch. It supports ACID transactions, has
a small, efficient server, a flexible schema system, and good support for troubleshooting and debugging. However,
it lacked several features that are important for OVN but not for Open vSwitch. As OVN advances, these missing
features have become more and more of a problem. One option would be to switch to a different database that already
has many of these features, but despite a careful search, no ideal existing database was identified, so the project chose
instead to improve OVSDB where necessary to bring it up to speed. The following sections talk more about recent
and future improvements.

High Availability

When ovsdb-server was only used for OVS configuration, high availability was not important. ovsdb-server
was capable of restarting itself automatically if it crashed, and if the whole system went down then Open vSwitch
itself was dead too, so the database server’s failure was not important.

In contrast, the northbound and southbound databases are centralized components of a distributed system, so it
is important that they not be a single point of failure for the system as a whole. In released versions of OVN,
ovsdb-server supports only “active-backup replication” across a pair of servers. This means that if one server

4.2. OVN 197

Open vSwitch, Release 2.9.4

goes down, the other can pick it back up approximately where the other one left off. The servers do not have built-in
support for deciding at any given time which is the active and which the backup, so the administrator must configure
an external agent to do this management.

Active-backup replication is not entirely satisfactory, for multiple reasons. Replication is only approximate. Config-
uring the external agent requires extra work. There is no benefit from the backup server except when the active server
fails. At most two servers can be used.

A new form of high availability for OVSDB is under development for the OVN 2.9 release, based on the Raft algo-
rithm for distributed consensus. Whereas replication uses two servers, clustering using Raft requires three or more
(typically an odd number) and continues functioning as long as more than half of the servers are up. The clustering
implementation is built into ovsdb-server and does not require an external agent. Clustering preserves the ACID
properties of the database, so that a transaction that commits is guaranteed to persist. Finally, reads (which are the
bulk of the OVN workload) scale with the size of the cluster, so that adding more servers should improve performance
as the number of hypervisors in an OVN deployment increases. As of this writing, OVSDB support for clustering is
undergoing development and early deployment testing.

RBAC security

Until Open vSwitch 2.8, ovsdb-server had little support for access control within a database. If an OVSDB client
could modify the database at all, it could make arbitrary changes. This was sufficient for most uses case to that point.

Hypervisors in an OVN deployment need access to the OVN southbound database. Most of their access is reads, to
find out about the OVN configuration. Hypervisors do need some write access to the southbound database, primarily
to let the other hypervisors know what VMs and containers they are running and how to reach them. Thus, OVN
gives all of the hypervisors in the OVN deployment write access to the OVN southbound database. This is fine when
all is well, but if any of the hypervisors were compromised then they could disrupt the entire OVN deployment by
corrupting the database.

The OVN developers considered a few ways to solve this problem. One way would be to introduce a new central
service (perhaps in ovn—-northd) that provided only the kinds of writes that the hypervisors legitimately need, and
then grant hypervisors direct access to the southbound database only for reads. But ultimately the developers decided
to introduce a new form of more access control for OVSDB, called the OVSDB RBAC (role-based access control)
feature. OVSDB RBAC allows for granular enough control over access that hypervisors can be granted only the
ability to add, modify, and delete the records that relate to themselves, preventing them from corrupting the database
as a whole.

Further Directions

For more information about new features in OVN and Open vSwitch, please refer to the NEWS file distributed with
the source tree. If you have questions about Open vSwitch or OVN features, please feel free to write to the Open
vSwitch discussion mailing list at ovs-discuss @openvswitch.org.

ovn-architecture(7) \ (pdf) \ (html) \ (plain text) ‘

198 Chapter 4. Deep Dive

mailto:ovs-discuss@openvswitch.org
http://openvswitch.org/support/dist-docs/ovn-architecture.7.pdf
http://openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://openvswitch.org/support/dist-docs/ovn-architecture.7.txt

CHAPTER B

How-to Guides

Answers to common “How do [7”-style questions. For more information on the topics covered herein, refer to Deep
Dive.

5.1 OVS

5.1.1 Open vSwitch with KVM

This document describes how to use Open vSwitch with the Kernel-based Virtual Machine (KVM).

Note: This document assumes that you have Open vSwitch set up on a Linux system.

Setup

KVM uses tunctl to handle various bridging modes, which you can install with the Debian/Ubuntu package
uml-utilities:

$ apt-get install uml-utilities

Next, you will need to modify or create custom versions of the gemu—1ifup and gemu-ifdown scripts. In this
guide, we’ll create custom versions that make use of example Open vSwitch bridges that we’ll describe in this guide.

Create the following two files and store them in known locations. For example:

$ cat << 'EOF' > /etc/ovs—-ifup
#!/bin/sh

switch="'br0'
ip link set $1 up

(continues on next page)

199

Open vSwitch, Release 2.9.4

(continued from previous page)

ovs-vsctl add-port ${switch} $1
EOF

S cat << 'EOF' > /etc/ovs—-ifdown
#!/bin/sh

switch='br0'

ip addr flush dev $1

ip link set $1 down

ovs-vsctl del-port ${switch} $1
EOF

The basic usage of Open vSwitch is described at the end of Open vSwitch on Linux, FreeBSD and NetBSD. If you
haven’t already, create a bridge named br0 with the following command:

’$ ovs—-vsctl add-br br0

Then, add a port to the bridge for the NIC that you want your guests to communicate over (e.g. eth0):

’$ ovs-vsctl add-port br0 ethO

Refer to ovs-vsctl(8) for more details.

Next, we’ll start a guest that will use our ifup and ifdown scripts:

$ kvm -m 512 -net nic,macaddr=00:11:22:EE:EE:EE -net \
tap, script=/etc/ovs—-ifup,downscript=/etc/ovs—-ifdown -drive \
file=/path/to/disk-image, boot=on

This will start the guest and associate a tap device with it. The ovs—ifup script will add a port on the brO bridge so
that the guest will be able to communicate over that bridge.

To get some more information and for debugging you can use Open vSwitch utilities such as ovs-dpctl and ovs-ofctl,
For example:

$ ovs—dpctl show
$ ovs-ofctl show br0

You should see tap devices for each KVM guest added as ports to the bridge (e.g. tap0)

Refer to ovs-dpctl(8) and ovs-ofctl(8) for more details.

Bug Reporting

Please report problems to bugs @openvswitch.org.

5.1.2 Open vSwitch with SELinux

Security-Enhanced Linux (SELinux) is a Linux kernel security module that limits “the malicious things” that certain
processes, including OVS, can do to the system in case they get compromised. In our case SELinux basically serves
as the “second line of defense” that limits the things that OVS processes are allowed to do. The “first line of defense”
is proper input validation that eliminates code paths that could be used by attacker to do any sort of “escape attacks”,
such as file name escape, shell escape, command line argument escape, buffer escape. Since developers don’t always
implement proper input validation, then SELinux Access Control’s goal is to confine damage of such attacks, if they
turned out to be possible.

200 Chapter 5. How-to Guides

mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

Besides Type Enforcement there are other SELinux features, but they are out of scope for this document.
Currently there are two SELinux policies for Open vSwitch:
* the one that ships with your Linux distribution (i.e. selinux-policy-targeted package)

¢ the one that ships with OVS (i.e. openvswitch-selinux-policy package)

Limitations

If Open vSwitch is directly started from command line, then it will run under unconfined_t SELinux domain that
basically lets daemon to do whatever it likes. This is very important for developers to understand, because they might
introduced code in OVS that invokes new system calls that SELinux policy did not anticipate. This means that their
feature may have worked out just fine for them. However, if someone else would try to run the same code when Open
vSwitch is started through systemctl, then Open vSwitch would get Permission Denied errors.

Currently the only distributions that enforce SELinux on OVS by default are RHEL, CentOS and Fedora. While
Ubuntu and Debian also have some SELinux support, they run Open vSwitch under the unrestricted unconfined
domain. Also, it seems that Ubuntu is leaning towards Apparmor that works slightly differently than SELinux.

SELinux and Open vSwitch are moving targets. What this means is that, if you solely rely on your Linux distribution’s
SELinux policy, then this policy might not have correctly anticipated that a newer Open vSwitch version needs extra
white list rules. However, if you solely rely on SELinux policy that ships with Open vSwitch, then Open vSwitch
developers might not have correctly anticipated the feature set that your SELinux implementation supports.

Installation

Refer to Fedora, RHEL 7.x Packaging for Open vSwitch for instructions on how to build all Open vSwitch rpm
packages.

Once the package is built, install it on your Linux distribution:

’$ dnf install openvswitch-selinux-policy-2.4.1-1.el7.centos.noarch.rpm

Restart Open vSwitch:

’$ systemctl restart openvswitch

Troubleshooting

When SELinux was implemented some of the standard system utilities acquired —Z flag (e.g. ps -Z, 1s -Z). For
example, to find out under which SELinux security domain process runs, use:

$ ps -AZ | grep ovs-vswitchd
system_u:system_r:openvswitch_t:s0 854 2 ovs—-vswitchd

To find out the SELinux label of file or directory, use:

$ 1ls -7 /etc/openvswitch/conf.db
system_u:object_r:openvswitch_rw_t:s0 /etc/openvswitch/conf.db

If, for example, SELinux policy for Open vSwitch is too strict, then you might see in Open vSwitch log files “Permis-
sion Denied” errors:

5.1. OVS 201

Open vSwitch, Release 2.9.4

$ cat /var/log/openvswitch/ovs-vswitchd.log

vlog|INFO|opened log file /var/log/openvswitch/ovs-vswitchd.log

ovs_numa | INFO|Discovered 2 CPU cores on NUMA node 0

ovs_numa | INFO|Discovered 1 NUMA nodes and 2 CPU cores

reconnect | INFO|unix:/var/run/openvswitch/db.sock: connecting...

reconnect | INFO|unix:/var/run/openvswitch/db.sock: connected

netlink_socket |ERR|fcntl: Permission denied

dpif_netlink |ERR|Generic Netlink family 'ovs_datapath' does not exist.
The Open vSwitch kernel module is probably not loaded.

dpif |[WARN|failed to enumerate system datapaths: Permission denied

dpif |[WARN|failed to create datapath ovs-system: Permission denied

However, not all “Permission denied” errors are caused by SELinux. So, before blaming too strict SELinux policy,
make sure that indeed SELinux was the one that denied OVS access to certain resources, for example, run:

$ grep “openvswitch_t” /var/log/audit/audit.log | tail type=AVC msg=audit(1453235431.640:114671):
avc: denied { getopt } for pid=4583 comm="ovs-vswitchd” scon-
text=system_u:system_r:openvswitch_t:sO tcontext=system_u:system_r:openvswitch_t:sO
tclass=netlink_generic_socket permissive=0

If SELinux denied OVS access to certain resources, then make sure that you have installed our SELinux policy package
that “loosens” up distribution’s SELinux policy:

$ rpm -ga | grep openvswitch-selinux
openvswitch-selinux-policy-2.4.1-1.el7.centos.noarch

Then verify that this module was indeed loaded:

semodule -1 | grep openvswitch
openvswitch-custom 1.0
openvswitch 1.1.1

If you still see Permission denied errors, then take a look into selinux/openvswitch.te.in file in the OVS
source tree and try to add white list rules. This is really simple, just run SELinux audit2allow tool:

$ grep "openvswitch_t" /var/log/audit/audit.log | audit2allow -M ovslocal

Contributing SELinux policy patches

Here are few things to consider before proposing SELinux policy patches to Open vSwitch developer mailing list:

1. The SELinux policy that resides in Open vSwitch source tree amends SELinux policy that ships with your
distributions.

Implications of this are that it is assumed that the distribution’s Open vSwitch SELinux module must be already
loaded to satisfy dependencies.

2. The SELinux policy that resides in Open vSwitch source tree must work on all currently relevant Linux distri-
butions.

Implications of this are that you should use only those SELinux policy features that are supported by the lowest
SELinux version out there. Typically this means that you should test your SELinux policy changes on the oldest
RHEL or CentOS version that this OVS version supports. Refer to Fedora, RHEL 7.x Packaging for Open
vSwitch to find out this.

3. The SELinux policy is enforced only when state transition to openvswitch_t domain happens.

202 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

Implications of this are that perhaps instead of loosening SELinux policy you can do certain things at the time
rpm package is installed.

Reporting Bugs

Report problems to bugs @openvswitch.org.

5.1.3 Open vSwitch with Libvirt
This document describes how to use Open vSwitch with Libvirt 0.9.11 or later. This document assumes that you
followed Open vSwitch on Linux, FreeBSD and NetBSD or installed Open vSwitch from distribution packaging such

as a .deb or .rpm. The Open vSwitch support is included by default in Libvirt 0.9.11. Consult www.libvirt.org for
instructions on how to build the latest Libvirt, if your Linux distribution by default comes with an older Libvirt release.

Limitations

Currently there is no Open vSwitch support for networks that are managed by libvirt (e.g. NAT). As of now, only
bridged networks are supported (those where the user has to manually create the bridge).

Setup

First, create the Open vSwitch bridge by using the ovs-vsctl utility (this must be done with administrative privileges):

’$ ovs-vsctl add-br ovsbr

Once that is done, create a VM, if necessary, and edit its Domain XML file:

’$ virsh edit <vm>

Lookup in the Domain XML file the <interface> section. There should be one such XML section for each
interface the VM has:

<interface type='network'>

<mac address='52:54:00:71:bl:b6"/>

<source network='default'/>

<address type='pci' domain='0x0000" bus='0x00" slot='0x03"' function='0x0"'/>
</interface>

And change it to something like this:

<interface type='bridge'>

<mac address='52:54:00:71:bl:b6"/>

<source bridge='ovsbr'/>

<virtualport type='openvswitch'/>

<address type='pci' domain='0x0000"' bus='0x00' slot='0x03' function='0x0"/>
</interface>

The interface type must be set to bridge. The <source> XML element specifies to which bridge this interface will
be attached to. The <virtualport> element indicates that the bridge in <source> element is an Open vSwitch
bridge.

Then (re)start the VM and verify if the guest’s vnet interface is attached to the ovsbr bridge:

5.1. OVS 203

mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

$ ovs-vsctl show

Troubleshooting

If the VM does not want to start, then try to run the libvirtd process either from the terminal, so that all errors are
printed in console, or inspect Libvirt/Open vSwitch log files for possible root cause.

Bug Reporting

Report problems to bugs @openvswitch.org.

5.1.4 Open vSwitch with SSL

If you plan to configure Open vSwitch to connect across the network to an OpenFlow controller, then we recom-
mend that you build Open vSwitch with OpenSSL. SSL support ensures integrity and confidentiality of the OpenFlow
connections, increasing network security.

This document describes how to configure an Open vSwitch to connect to an OpenFlow controller over SSL. Refer to
Open vSwitch on Linux, FreeBSD and NetBSD. for instructions on building Open vSwitch with SSL support.

Open vSwitch uses TLS version 1.0 or later (TLSv1), as specified by RFC 2246, which is very similar to SSL version
3.0. TLSv1 was released in January 1999, so all current software and hardware should implement it.

This document assumes basic familiarity with public-key cryptography and public-key infrastructure.

SSL Concepts for OpenFlow

This section is an introduction to the public-key infrastructure architectures that Open vSwitch supports for SSL
authentication.

To connect over SSL, every Open vSwitch must have a unique private/public key pair and a certificate that signs that
public key. Typically, the Open vSwitch generates its own public/private key pair. There are two common ways to
obtain a certificate for a switch:

 Self-signed certificates: The Open vSwitch signs its certificate with its own private key. In this case, each switch
must be individually approved by the OpenFlow controller(s), since there is no central authority.

This is the only switch PKI model currently supported by NOX (http://noxrepo.org).

» Switch certificate authority: A certificate authority (the “switch CA”) signs each Open vSwitch’s public key.
The OpenFlow controllers then check that any connecting switches’ certificates are signed by that certificate
authority.

This is the only switch PKI model supported by the simple OpenFlow controller included with Open vSwitch.

Each Open vSwitch must also have a copy of the CA certificate for the certificate authority that signs OpenFlow
controllers’ keys (the “controller CA” certificate). Typically, the same controller CA certificate is installed on all of
the switches within a given administrative unit. There are two common ways for a switch to obtain the controller CA
certificate:

e Manually copy the certificate to the switch through some secure means, e.g. using a USB flash drive, or over
the network with “scp”, or even FTP or HTTP followed by manual verification.

* Open vSwitch “bootstrap” mode, in which Open vSwitch accepts and saves the controller CA certificate that
it obtains from the OpenFlow controller on its first connection. Thereafter the switch will only connect to
controllers signed by the same CA certificate.

204 Chapter 5. How-to Guides

mailto:bugs@openvswitch.org
http://noxrepo.org

Open vSwitch, Release 2.9.4

Establishing a Public Key Infrastructure

Open vSwitch can make use of your existing public key infrastructure. If you already have a PKI, you may skip
forward to the next section. Otherwise, if you do not have a PKI, the ovs-pki script included with Open vSwitch can
help. To create an initial PKI structure, invoke it as:

$ ovs-pki init

This will create and populate a new PKI directory. The default location for the PKI directory depends on how the
Open vSwitch tree was configured (to see the configured default, look for the ——di r option description in the output
of ovs—pki —-help).

The pki directory contains two important subdirectories. The controllerca subdirectory contains controller CA files,
including the following:

cacert.pem Root certificate for the controller certificate authority. Each Open vSwitch must have a copy of this file to
allow it to authenticate valid controllers.

private/cakey.pem Private signing key for the controller certificate authority. This file must be kept secret. There is
no need for switches or controllers to have a copy of it.

The switchca subdirectory contains switch CA files, analogous to those in the controllerca subdirectory:

cacert.pem Root certificate for the switch certificate authority. The OpenFlow controller must have this file to enable
it to authenticate valid switches.

private/cakey.pem Private signing key for the switch certificate authority. This file must be kept secret. There is no
need for switches or controllers to have a copy of it.

After you create the initial structure, you can create keys and certificates for switches and controllers with ovs-pki.
Refer to the ovs-pki(8) manage for complete details. A few examples of its use follow:

Controller Key Generation

To create a controller private key and certificate in files named ctl-privkey.pem and ctl-cert.pem, run the following on
the machine that contains the PKI structure:

$ ovs-pki reg+sign ctl controller

ctl-privkey.pem and ctl-cert.pem would need to be copied to the controller for its use at runtime. If, for testing purposes,
you were to use ovs-testcontroller, the simple OpenFlow controller included with Open vSwitch, then the —private-key
and —certificate options, respectively, would point to these files.

It is very important to make sure that no stray copies of ctl-privkey.pem are created, because they could be used to
impersonate the controller.

Switch Key Generation with Self-Signed Certificates

If you are using self-signed certificates (see “SSL Concepts for OpenFlow™), this is one way to create an acceptable
certificate for your controller to approve.

1. Run the following command on the Open vSwitch itself:

$ ovs-pki self-sign sc

5.1. OVS 205

Open vSwitch, Release 2.9.4

3.

Note: This command does not require a copy of any of the PKI files generated by ovs-pki init, and you
should not copy them to the switch because some of them have contents that must remain secret for security.)

The ovs-pki self-sign command has the following output:

sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret. There is
ordinarily no need to copy this file off the Open vSwitch.

sc-cert.pem the switch certificate, signed by the switch’s own private key. Its contents are not a secret.

Optionally, copy controllerca/cacert.pem from the machine that has the OpenFlow PKI structure and verify that
it is correct. (Otherwise, you will have to use CA certificate bootstrapping when you configure Open vSwitch
in the next step.)

Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

Switch Key Generation with a Switch PKI (Easy Method)

If you are using a switch PKI (see “SSL Concepts for OpenFlow”, above), this method of switch key generation is a
little easier than the alternate method described below, but it is also a little less secure because it requires copying a
sensitive private key from file from the machine hosting the PKI to the switch.

1.

Run the following on the machine that contains the PKI structure:

$ ovs-pki regt+sign sc switch

This command has the following output:

sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret.
sc-cert.pem the switch certificate. Its contents are not a secret.

Copy sc-privkey.pem and sc-cert.pem, plus controllerca/cacert.pem, to the Open vSwitch.

Delete the copies of sc-privkey.pem and sc-cert.pem on the PKI machine and any other copies that may have
been made in transit. It is very important to make sure that there are no stray copies of sc-privkey.pem, because
they could be used to impersonate the switch.

Warning: Don’t delete controllerca/cacert.pem! It is not security-sensitive and you will need it to configure
additional switches.

4. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

Switch Key Generation with a Switch PKI (More Secure)

If you are using a switch PKI (see “SSL Concepts for OpenFlow”, above), then, compared to the previous method, the
method described here takes a little more work, but it does not involve copying the private key from one machine to
another, so it may also be a little more secure.

1.

Run the following command on the Open vSwitch itself:

$ ovs-pki req sc

206

Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

Note: This command does not require a copy of any of the PKI files generated by “ovs-pki init”, and you
should not copy them to the switch because some of them have contents that must remain secret for security.

The “ovs-pki req” command has the following output:

sc-privkey.pem the switch private key file. For security, the contents of this file must remain secret. There is
ordinarily no need to copy this file off the Open vSwitch.

sc-req.pem the switch “certificate request”, which is essentially the switch’s public key. Its contents are not a
secret.

a fingerprint this is output on stdout.
2. Write the fingerprint down on a slip of paper and copy sc-req.pem to the machine that contains the PKI structure.

3. On the machine that contains the PKI structure, run:

$ ovs-pki sign sc switch

This command will output a fingerprint to stdout and request that you verify it. Check that it is the same as the
fingerprint that you wrote down on the slip of paper before you answer “yes”.

ovs—pki sign creates a file named sc-cert.pem, which is the switch certificate. Its contents are not a secret.

4. Copy the generated sc-cert.pem, plus controllerca/cacert.pem from the PKI structure, to the Open vSwitch, and
verify that they were copied correctly.

You may delete sc-cert.pem from the machine that hosts the PKI structure now, although it is not important that
you do so.

Warning: Don’t delete controllerca/cacert.pem! It is not security-sensitive and you will need it to configure
additional switches.

5. Configure Open vSwitch to use the keys and certificates (see “Configuring SSL Support”, below).

Configuring SSL Support

SSL configuration requires three additional configuration files. The first two of these are unique to each Open vSwitch.
If you used the instructions above to build your PKI, then these files will be named sc-privkey.pem and sc-cert.pem,
respectively:

* A private key file, which contains the private half of an RSA or DSA key.

This file can be generated on the Open vSwitch itself, for the greatest security, or it can be generated elsewhere
and copied to the Open vSwitch.

The contents of the private key file are secret and must not be exposed.
* A certificate file, which certifies that the private key is that of a trustworthy Open vSwitch.

This file has to be generated on a machine that has the private key for the switch certification authority, which
should not be an Open vSwitch; ideally, it should be a machine that is not networked at all.

The certificate file itself is not a secret.

The third configuration file is typically the same across all the switches in a given administrative unit. If you used the
instructions above to build your PKI, then this file will be named cacert.pem:

5.1. OVS 207

Open vSwitch, Release 2.9.4

* The root certificate for the controller certificate authority. The Open vSwitch verifies it that is authorized to
connect to an OpenFlow controller by verifying a signature against this CA certificate.

Once you have these files, configure ovs-vswitchd to use them using the ovs-vsctl set-ssl command,e.g.:

$ ovs-vsctl set-ssl /etc/openvswitch/sc-privkey.pem \
/etc/openvswitch/sc-cert.pem /etc/openvswitch/cacert.pem

Substitute the correct file names, of course, if they differ from the ones used above. You should use absolute file
names (ones that begin with /), because ovs-vswitchd’s current directory is unrelated to the one from which you run
ovs-vsctl.

If you are using self-signed certificates (see “SSL Concepts for OpenFlow”) and you did not copy con-
trollerca/cacert.pem from the PKI machine to the Open vSwitch, then add the ——boot strap option, e.g.:

$ ovs-vsctl —-- --bootstrap set-ssl /etc/openvswitch/sc-privkey.pem \
/etc/openvswitch/sc-cert.pem /etc/openvswitch/cacert.pem

After you have added all of these configuration keys, you may specify ss1: connection methods elsewhere in the
configuration database. tcp: connection methods are still allowed even after SSL has been configured, so for security
you should use only ss1: connections.

Reporting Bugs

Report problems to bugs @openvswitch.org.

5.1.5 Using LISP tunneling

LISP is a layer 3 tunneling mechanism, meaning that encapsulated packets do not carry Ethernet headers, and ARP
requests shouldn’t be sent over the tunnel. Because of this, there are some additional steps required for setting up LISP
tunnels in Open vSwitch, until support for L3 tunnels will improve.

This guide assumes tunneling between two VMs connected to OVS bridges on different hypervisors reachable over
IPv4. Of course, more than one VM may be connected to any of the hypervisors, and a hypervisor may communicate
with several different hypervisors over the same lisp tunneling interface. A LISP “map-cache” can be implemented
using flows, see example at the bottom of this file.

There are several scenarios:

1. the VMs have IP addresses in the same subnet and the hypervisors are also in a single subnet (although one
different from the VM'’s);

2. the VMs have IP addresses in the same subnet but the hypervisors are separated by a router;
3. the VMs are in different subnets.

In cases 1) and 3) ARP resolution can work as normal: ARP traffic is configured not to go through the LISP tunnel.
For case 1) ARP is able to reach the other VM, if both OVS instances default to MAC address learning. Case 3)
requires the hypervisor be configured as the default router for the VMs.

In case 2) the VMs expect ARP replies from each other, but this is not possible over a layer 3 tunnel. One solution
is to have static MAC address entries preconfigured on the VMs (e.g., arp —f /etc/ethers on startup on Unix
based VMs), or have the hypervisor do proxy ARP. In this scenario, the ethQ interfaces need not be added to the br0
bridge in the examples below.

On the receiving side, the packet arrives without the original MAC header. The LISP tunneling code attaches a header
with harcoded source and destination MAC address 02: 00:00:00:00: 00. This address has all bits set to 0, except
the locally administered bit, in order to avoid potential collisions with existing allocations. In order for packets to

208 Chapter 5. How-to Guides

mailto:bugs@openvswitch.org

Open vSwitch, Release 2.9.4

reach their intended destination, the destination MAC address needs to be rewritten. This can be done using the flow
table.

See below for an example setup, and the associated flow rules to enable LISP tunneling.

Diagram
+———+ +———+
| VM1 | | VM2 |
+———+ +———+
\ \
+-——[tap0]——+ +-——[tap0]———+
\ \ \ \
[1isp0] OVS1l [ethO]-——————-——— [eth0] OVS2 [lispO]
\ \ \ \
dom———— + Fom +

On each hypervisor, interfaces tap0, ethO, and lisp0O are added to a single bridge instance, and become numbered 1, 2,
and 3 respectively:

ovs—-vsctl add-br br0

ovs-vsctl add-port br0 tap0

ovs-vsctl add-port br0 ethO

ovs-vsctl add-port br0 lispO \

—-— set Interface lisp0O type=lisp options:remote_ip=flow options:key=flow

v r W

The last command sets up flow based tunneling on the lisp0 interface. From the LISP point of view, this is like having
the Tunnel Router map cache implemented as flow rules.

Flows on br0 should be configured as follows:

priority=3,dl_dst=02:00:00:00:00:00,action=mod_dl_dst:<VMx_MAC>,output:1l
priority=2,in_port=1,dl_type=0x0806,action=NORMAL
priority=1,in_port=1,dl_type=0x0800,vlan_tci=0,nw_src=<EID_prefix>,action=set_field:
—<Q0VSx_IP>->tun_dst, output:3

priority=0, action=NORMAL

The third rule is like a map cache entry: the <EID_prefix> specified by the nw_src match field is mapped to the
RLOC <0vVSx_IP>, which is set as the tunnel destination for this particular flow.

Optionally, if you want to use Instance ID in a flow, you can add set_tunnel : <IID> to the action list.

5.1.6 Connecting VMs Using Tunnels

This document describes how to use Open vSwitch to allow VMs on two different hosts to communicate over port-
based GRE tunnels.

Note: This guide covers the steps required to configure GRE tunneling. The same approach can be used for any of
the other tunneling protocols supported by Open vSwitch.

5.1. OVS 209

Open vSwitch, Release 2.9.4

Host 1 Host 2

" Transport

7 Management)

-

%L Network ' T Network
—~— L — — L —

Setup

This guide assumes the environment is configured as described below.

Two Physical Networks

 Transport Network

Ethernet network for tunnel traffic between hosts running OVS. Depending on the tunneling protocol being used
(this cookbook uses GRE), some configuration of the physical switches may be required (for example, it may
be necessary to adjust the MTU). Configuration of the physical switching hardware is outside the scope of this
cookbook entry.

* Management Network

Strictly speaking this network is not required, but it is a simple way to give the physical host an IP address
for remote access since an IP address cannot be assigned directly to a physical interface that is part of an OVS
bridge.

Two Physical Hosts

The environment assumes the use of two hosts, named hostI and host2. Both hosts are hypervisors running Open
vSwitch. Each host has two NICs, eth0 and ethl, which are configured as follows:

* eth0 is connected to the Transport Network. eth0 has an IP address that is used to communicate with Host2 over
the Transport Network.

* ethl is connected to the Management Network. eth] has an IP address that is used to reach the physical host for
management.

Four Virtual Machines

Each host will run two virtual machines (VMSs). vmlI and vm2 are running on hostl, while vm3 and vm4 are running
on host2.

210 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vi£1.0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

Configuration Steps

Before you begin, you’ll want to ensure that you know the IP addresses assigned to eth0 on both hostl and host2, as
they will be needed during the configuration.

Perform the following configuration on hostl.

1. Create an OVS bridge:

$ ovs-vsctl add-br br0

Note: You will not add ethO to the OVS bridge.

2. Boot vml and vm2 on hostl. If the VMs are not automatically attached to OVS, add them to the OVS bridge
you just created (the commands below assume tap0 is for vnl and tapl is for vin2):

$ ovs-vsctl add-port br0 tapO
$ ovs-vsctl add-port br0 tapl

3. Add a port for the GRE tunnel:

$ ovs-vsctl add-port br0 greO \
—-— set interface gre0 type=gre options:remote_ip=<IP of eth0 on host2>

Create a mirrored configuration on host2 using the same basic steps:

1. Create an OVS bridge, but do not add any physical interfaces to the bridge:

$ ovs-vsctl add-br bro0

2. Launch vm3 and vm4 on host2, adding them to the OVS bridge if needed (again, tap0 is assumed to be for vin3
and tapl is assumed to be for vin4):

$ ovs-vsctl add-port br0 tapO
$ ovs-vsctl add-port br0 tapl

3. Create the GRE tunnel on host2, this time using the IP address for ethO on hostl when specifying the
remote_1ip option:

$ ovs-vsctl add-port br0 gre0 — set interface gre0 type=gre options:remote_ip=<IP of ethO on
host1>

Testing

Pings between any of the VMs should work, regardless of whether the VMs are running on the same host or different
hosts.

Using ip route show (or equivalent command), the routing table of the operating system running inside the VM
should show no knowledge of the IP subnets used by the hosts, only the IP subnet(s) configured within the VM’s

5.1. OVS 211

Open vSwitch, Release 2.9.4

operating system. To help illustrate this point, it may be preferable to use very different IP subnet assignments within
the guest VM than what is used on the hosts.

Troubleshooting

If connectivity between VMs on different hosts isn’t working, check the following items:

* Make sure that hostl and host2 have full network connectivity over ethO (the NIC attached to the Transport
Network). This may necessitate the use of additional IP routes or IP routing rules.

* Make sure that gre0 on hostI points to et h0 on host2, and that gre 0 on host2 points to et h0 on host!.

* Ensure that all the VMs are assigned IP addresses on the same subnet; there is no IP routing functionality in this
configuration.

5.1.7 Connecting VMs Using Tunnels (Userspace)

This document describes how to use Open vSwitch to allow VMs on two different hosts to communicate over VXLAN
tunnels. Unlike Connecting VMs Using Tunnels, this configuration works entirely in userspace.

Note: This guide covers the steps required to configure VXLAN tunneling. The same approach can be used for any
of the other tunneling protocols supported by Open vSwitch.

o +
| vm0 | 192.168.1.1/24
o +
(vm_port0)
\
\
\
o +
| br-int 192.168.1.2/24
o + o +
| vxlanO | | vxlanO |
o + o ——— +

fom +
\ br-phy \ 172.168.1.2/24
o + Fom +
| dpdk0O/ethl |-~ | ethl \
o —— + o ——— +
Host A with OVS. Remote host.
Setup

This guide assumes the environment is configured as described below.

212 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

Two Physical Hosts

The environment assumes the use of two hosts, named host1 and host2. We only detail the configuration of host! but
a similar configuration can be used for host2. Both hosts should be configured with Open vSwitch (with or without
the DPDK datapath), QEMU/KVM and suitable VM images. Open vSwitch should be running before proceeding.

Configuration Steps

Perform the folowing configuration on host1:

1. Create a br—int bridge:

$ ovs-vsctl --may-exist add-br br-int \
—— set Bridge br-int datapath_type=netdev \
—— br-set-external-id br-int bridge-id br-int \
—-— set bridge br-int fail-mode=standalone

2. Add a port to this bridge. If using tap ports, first boot a VM and then add the port to the bridge:

$ ovs-vsctl add-port br-int tapO

If using DPDK vhost-user ports, add the port and then boot the VM accordingly, using vm_port0 as the
interface name:

$ ovs-vsctl add-port br-int vm_port0 \
—-— set Interface vm_port0 type=dpdkvhostuser

3. Configure the IP address of the VM interface in the VM itself:

$ ip addr add 192.168.1.1/24 dev ethO
$ ip link set ethO up

4. On hostl, add a port for the VXLAN tunnel:

$ ovs-vsctl add-port br-int vxlan0 \
—— set interface vxlanO type=vxlan options:remote_ip=172.168.1.2

Note: 172.168.1.2 is the remote tunnel end point address. On the remote host this willbe 172.168.1.1

5. Create a br—phy bridge:

$ ovs-vsctl —--may-exist add-br br-phy \
—-— set Bridge br-phy datapath_type=netdev \
—— br-set-external-id br-phy bridge-id br-phy \
-— set bridge br-phy fail-mode=standalone \
other_config:hwaddr=<mac address of ethl interface>

Note: This additional bridge is required when running Open vSwitch in userspace rather than kernel-based
Open vSwitch. The purpose of this bridge is to allow use of the kernel network stack for routing and ARP
resolution. The datapath needs to look-up the routing table and ARP table to prepare the tunnel header and
transmit data to the output port.

5.1. OVS 213

Open vSwitch, Release 2.9.4

Note: ethl is used rather than ethO0. This is to ensure network connectivity is retained.

6. Attach eth1/dpdkO0 to the br—phy bridge.

If the physical port et h1 is operating as a kernel network interface, run:

ovs—-vsctl —-timeout 10 add-port br-phy ethl
ip addr add 172.168.1.1/24 dev br-phy

ip link set br-phy up

ip addr flush dev ethl 2>/dev/null

ip link set ethl up

iptables -F

v W Ay Ay

If instead the interface is a DPDK interface and bound to the igb_uio or vfio driver, run:

$ ovs-vsctl —-timeout 10 add-port br-phy dpdk0 \
—— set Interface dpdk0O type=dpdk options:dpdk-devargs=0000:06:00.0
$ ip addr add 172.168.1.1/24 dev br-phy
ip link set br-phy up
$ iptables -F

U

The commands are different as DPDK interfaces are not managed by the kernel, thus, the port details are not
visible to any ip commands.

Important: Attempting to use the kernel network commands for a DPDK interface will result in a loss of
connectivity through ethl. Refer to Basic Configuration for more details.

Once complete, check the cached routes using ovs-appctl command:

’$ ovs—appctl ovs/route/show

If the tunnel route is missing, adding it now:

’$ ovs—appctl ovs/route/add 172.168.1.1/24 br-ethl

Repeat these steps if necessary for host2, but using 192.168.1.1 and 172.168.1.2 for the VM and tunnel
interface IP addresses, respectively.

Testing

With this setup, ping to VXLAN target device (192.168.1.2) should work. Traffic will be VXLAN encapsulated
and sent over the et h1/dpdk0 interface.

Tunneling-related Commands

Tunnel routing table

To add route:

$ ovs—appctl ovs/route/add <IP address>/<prefix length> <output-bridge-name> <gw>

To see all routes configured:

214 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

’$ ovs—appctl ovs/route/show

To delete route:

’$ ovs—appctl ovs/route/del <IP address>/<prefix length>

To look up and display the route for a destination:

’$ ovs—appctl ovs/route/lookup <IP address>

ARP

To see arp cache content:

’$ ovs—appctl tnl/arp/show

To flush arp cache:

’$ ovs—appctl tnl/arp/flush

To set a specific arp entry:

’$ ovs—appctl tnl/arp/set <bridge> <IP address> <MAC address>

Ports

To check tunnel ports listening in ovs-vswitchd:

’$ ovs—appctl tnl/ports/show

To set range for VxLan UDP source port:

’$ ovs—appctl tnl/egress_port_range <numl> <num2>

To show current range:

’$ ovs—appctl tnl/egress_port_range

Datapath

To check datapath ports:

’$ ovs—appctl dpif/show

To check datapath flows:

’$ ovs—appctl dpif/dump-flows

5.1. OVS 215

Open vSwitch, Release 2.9.4

5.1.8 Isolating VM Traffic Using VLANs

This document describes how to use Open vSwitch is to isolate VM traffic using VLANS.

Host 1 Host 2

ethO ethl

- T . —— T T

" Data 7 Management

Setup

This guide assumes the environment is configured as described below.

Two Physical Networks

¢ Data Network

Ethernet network for VM data traffic, which will carry VLAN-tagged traffic between VMs. Your physical
switch(es) must be capable of forwarding VLAN-tagged traffic and the physical switch ports should operate as
VLAN trunks. (Usually this is the default behavior. Configuring your physical switching hardware is beyond
the scope of this document.)

* Management Network

This network is not strictly required, but it is a simple way to give the physical host an IP address for remote
access, since an IP address cannot be assigned directly to ethO (more on that in a moment).

216 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

Two Physical Hosts

The environment assumes the use of two hosts: hostl and host2. Both hosts are running Open vSwitch. Each host has
two NICs, ethO and eth1, which are configured as follows:

* ethO is connected to the Data Network. No IP address is assigned to eth0.

* ethl is connected to the Management Network (if necessary). ethl has an IP address that is used to reach the
physical host for management.

Four Virtual Machines

Each host will run two virtual machines (VMs). vml and vm2 are running on hostl, while vm3 and vm4 are running
on host2.

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vi£1.0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

Configuration Steps

Perform the following configuration on host1:

1. Create an OVS bridge:

’$ ovs-vsctl add-br br0

2. Add etho0 to the bridge:

’$ ovs-vsctl add-port br0 ethO

Note: By default, all OVS ports are VLAN trunks, so ethO will pass all VLANs

Note: When you add ethO to the OVS bridge, any IP addresses that might have been assigned to ethO stop
working. IP address assigned to ethO should be migrated to a different interface before adding ethO to the OVS
bridge. This is the reason for the separate management connection via ethl.

3. Add vml as an “access port” on VLAN 100. This means that traffic coming into OVS from VM1 will be
untagged and considered part of VLAN 100:

’$ ovs-vsctl add-port br0 tap0 tag=100

Add VM2 on VLAN 200:

’$ ovs-vsctl add-port br0 tapl tag=200

Repeat these steps on host2:
1. Setup a bridge with ethO as a VLAN trunk:

5.1. OVS 217

Open vSwitch, Release 2.9.4

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 ethO

2. Add VM3 to VLAN 100:

’$ ovs-vsctl add-port br0 tap0 tag=100

3. Add VM4 to VLAN 200:

’$ ovs-vsctl add-port br0 tapl tag=200

Validation

Pings from vmI to vin3 should succeed, as these two VMs are on the same VLAN.
Pings from vm2 to vin4 should also succeed, since these VMs are also on the same VLAN as each other.

Pings from vmlI/vm3 to vm2/vm4 should not succeed, as these VMs are on different VLANs. If you have a router
configured to forward between the VLANS, then pings will work, but packets arriving at vmm3 should have the source
MAC address of the router, not of vmni.

5.1.9 Quality of Service (QoS) Rate Limiting

This document explains how to use Open vSwitch to rate-limit traffic by a VM to either 1 Mbps or 10 Mbps.

218 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

Host 1

Measurement Host

Setup

This guide assumes the environment is configured as described below.

One Physical Network

¢ Data Network

Ethernet network for VM data traffic. This network is used to send traffic to and from an external host used
for measuring the rate at which a VM is sending. For experimentation, this physical network is optional; you
can instead connect all VMs to a bridge that is not connected to a physical interface and use a VM as the
measurement host.

There may be other networks (for example, a network for management traffic), but this guide is only concerned with
the Data Network.

Two Physical Hosts

The first host, named host!, is a hypervisor that runs Open vSwitch and has one NIC. This single NIC, ethO0, is
connected to the Data Network. Because it is participating in an OVS bridge, no IP address can be assigned on eth0.

5.1. OVS 219

Open vSwitch, Release 2.9.4

The second host, named Measurement Host, can be any host capable of measuring throughput from a VM. For this
guide, we use netperf, a free tool for testing the rate at which one host can send to another. The Measurement Host
has only a single NIC, eth0, which is connected to the Data Network. eth0 has an IP address that can reach any VM
on hostl.

Two VMs

Both VMs (vl and vm?2) run on hostl.

Each VM has a single interface that appears as a Linux device (e.g., tap0) on the physical host.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif1. 0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

Configuration Steps

For both VMs, we modify the Interface table to configure an ingress policing rule. There are two values to set:
ingress_policing_ rate the maximum rate (in Kbps) that this VM should be allowed to send

ingress_policing_burst a parameter to the policing algorithm to indicate the maximum amount of data (in
Kb) that this interface can send beyond the policing rate.

To rate limit VM1 to 1 Mbps, use these commands:

$ ovs-vsctl set interface tap0 ingress_policing_rate=1000
$ ovs-vsctl set interface tap0 ingress_policing_burst=100

Similarly, to limit vin2 to 10 Mbps, enter these commands on hostI:

$ ovs-vsctl set interface tapl ingress_policing_rate=10000
$ ovs-vsctl set interface tapl ingress_policing_burst=1000

To see the current limits applied to VM1, run this command:

$ ovs-vsctl list interface tap0

Testing

To test the configuration, make sure netperf is installed and running on both VMs and on the Measurement Host.
netperf consists of a client (netperf) and a server (netserver). In this example, we run netserver on the
Measurement Host (installing Netperf usually starts net server as a daemon, meaning this is running by default).

For this example, we assume that the Measurement Host has an IP of 10.0.0.100 and is reachable from both VMs.

From vml, run this command:

$ netperf -H 10.0.0.100

This will cause VM1 to send TCP traffic as quickly as it can to the Measurement Host. After 10 seconds, this will
output a series of values. We are interested in the “Throughput” value, which is measured in Mbps (1076 bits/sec).
For VM1 this value should be near 1. Running the same command on VM2 should give a result near 10.

220 Chapter 5. How-to Guides

http://www.netperf.org

Open vSwitch, Release 2.9.4

Troubleshooting

Open vSwitch uses the Linux traffic-control capability for rate-limiting. If you are not seeing the configured rate-limit
have any effect, make sure that your kernel is built with “ingress qdisc” enabled, and that the user-space utilities (e.g.,
/sbin/tc) are installed.

Additional Information

Open vSwitch’s rate-limiting uses policing, which does not queue packets. It drops any packets beyond the specified
rate. Specifying a larger burst size lets the algorithm be more forgiving, which is important for protocols like TCP that
react severely to dropped packets. Setting a burst size of less than than the MTU (e.g., 10 kb) should be avoided.

For TCP traffic, setting a burst size to be a sizeable fraction (e.g., > 10%) of the overall policy rate helps a flow come
closer to achieving the full rate. If a burst size is set to be a large fraction of the overall rate, the client will actually
experience an average rate slightly higher than the specific policing rate.

For UDP traffic, set the burst size to be slightly greater than the MTU and make sure that your performance tool
does not send packets that are larger than your MTU (otherwise these packets will be fragmented, causing poor
performance). For example, you can force netperf to send UDP traffic as 1000 byte packets by running:

$ netperf -H 10.0.0.100 -t UDP_STREAM —-- -m 1000

5.1.10 How to Use the VTEP Emulator

This document explains how to use ovs-vtep, a VXLAN Tunnel Endpoint (VTEP) emulator that uses Open vSwitch
for forwarding. VTEPs are the entities that handle VXLAN frame encapsulation and decapsulation in a network.

Requirements

The VTEP emulator is a Python script that invokes calls to tools like vtep-ctl and ovs-vsctl. It is only useful when
Open vSwitch daemons like ovsdb-server and ovs-vswitchd are running and installed. To do this, either:

¢ Follow the instructions in Open vSwitch on Linux, FreeBSD and NetBSD (don’t start any daemons yet).

* Follow the instructions in Debian Packaging for Open vSwitch and then install the openvswitch-vtep
package (if operating on a debian based machine). This will automatically start the daemons.

Design

At the end of this process, you should have the following setup:

Architecture

(continues on next page)

5.1. OVS 221

http://lartc.org/howto/lartc.qdisc.html

Open vSwitch, Release 2.9.4

(continued from previous page)

| br0 +-—————- O——————————— O— == o——+ |
\ jolt) pl br0 |
\ \
\ \
\ o + +——— +
Fom | ethO0 |-——] ethl |[——+
o + +———— +
10.1.1.1 10.2.2.1
MANAGEMENT | |
+-——————— o————+ |
|
DATA/TUNNEL |
o o———+

Some important points.
* We will use Open vSwitch to create our “physical” switch labeled br0

e Our “physical” switch br0 will have one internal port also named br0 and two “physical” ports, namely p0
and p1l.

* The host machine may have two external interfaces. We will use eth0 for management traffic and ethl for
tunnel traffic (One can use a single interface to achieve both). Please take note of their IP addresses in the
diagram. You do not have to use exactly the same IP addresses. Just know that the above will be used in the
steps below.

* You can optionally connect physical machines instead of virtual machines to switch br0. In that case:
— Make sure you have two extra physical interfaces in your host machine, eth2 and eth3.
— In the rest of this doc, replace pO with eth2 and p1 with eth3.

5. In addition to implementing p0O and p1l as physical interfaces, you can also optionally implement them as
standalone TAP devices, or VM interfaces for simulation.

6. Creating and attaching the VMs is outside the scope of this document and is included in the diagram for reference
purposes only.

Startup

These instructions describe how to run with a single ovsdb-server instance that handles both the OVS and VTEP
schema. You can skip steps 1-3 if you installed using the debian packages as mentioned in step 2 of the “Requirements”
section.

1. Create the initial OVS and VTEP schemas:

$ ovsdb-tool create /etc/openvswitch/ovs.db vswitchd/vswitch.ovsschema
$ ovsdb-tool create /etc/openvswitch/vtep.db vtep/vtep.ovsschema

2. Start ovsdb-server and have it handle both databases:

$ ovsdb-server —--pidfile —--detach —-log—-file \
—--remote punix:/var/run/openvswitch/db.sock \
—--remote=db:hardware_vtep, Global, managers \
/etc/openvswitch/ovs.db /etc/openvswitch/vtep.db

3. Start ovs-vswitchd as normal:

222 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

$ ovs-vswitchd --log-file —--detach —--pidfile \
unix:/var/run/openvswitch/db.sock

4. Create a “physical” switch and its ports in OVS:

$ ovs-vsctl add-br br0
$ ovs-vsctl add-port br0 pO
$ ovs-vsctl add-port br0 pl

5. Configure the physical switch in the VTEP database:

$ vtep-ctl add-ps br0
$ vtep-ctl set Physical_Switch br0 tunnel_ips=10.2.2.1

6. Start the VTEP emulator. If you installed the components following Open vSwitch on Linux, FreeBSD and
NetBSD, run the following from the vtep directory:

$./ovs-vtep —--log-file=/var/log/openvswitch/ovs—-vtep.log \
—--pidfile=/var/run/openvswitch/ovs-vtep.pid \
——-detach br0

If the installation was done by installing the openvswitch-vtep package, you can find ovs-vtep at /usr/share/
openvswitch/scripts.

7. Configure the VTEP database’s manager to point at an NVC:

$ vtep-ctl set-manager tcp:<CONTROLLER IP>:6640

Where <CONTROLLER IP> is your controller’s IP address that is accessible via the Host Machine’s ethO
interface.

Simulating an NVC

A VTEP implementation expects to be driven by a Network Virtualization Controller (NVC), such as NSX. If one
does not exist, it’s possible to use vtep-ctl to simulate one:

1. Create a logical switch:

$ vtep-ctl add-1s 1s0

2. Bind the logical switch to a port:

$ vtep-ctl bind-1s br0 pO0 0 1s0
$ vtep-ctl set Logical_Switch 1s0 tunnel_key=33

3. Direct unknown destinations out a tunnel.

For handling L2 broadcast, multicast and unknown unicast traffic, packets can be sent to all members of a logical
switch referenced by a physical switch. The “unknown-dst” address below is used to represent these packets.
There are different modes to replicate the packets. The default mode of replication is to send the traffic to a
service node, which can be a hypervisor, server or appliance, and let the service node handle replication to other
transport nodes (hypervisors or other VTEP physical switches). This mode is called service node replication.
An alternate mode of replication, called source node replication, involves the source node sending to all other
transport nodes. Hypervisors are always responsible for doing their own replication for locally attached VMs in
both modes. Service node mode is the default. Service node replication mode is considered a basic requirement
because it only requires sending the packet to a single transport node. The following configuration is for service
node replication mode as only a single transport node destination is specified for the unknown-dst address:

5.1. OVS 223

Open vSwitch, Release 2.9.4

’$ vtep—-ctl add-mcast-remote 1s0 unknown-dst 10.2.2.2

4. Optionally, change the replication mode from a default of service_node to source_node, which can be
done at the logical switch level:

’$ vtep-ctl set-replication-mode 1s0 source_node

5. Direct unicast destinations out a different tunnel:

’$ vtep-ctl add-ucast-remote 1s0 00:11:22:33:44:55 10.2.2.3

5.1.11 Monitoring VM Trafic Using sFlow

This document describes how to use Open vSwitch is to monitor traffic sent between two VMs on the same host using
an sFlow collector. VLANS.

Host 1
Monitoring Host
|
JiR]
= " Data 2 "-_Mé;iagement_ .\
" Network . Network

R i

Setup

This guide assumes the environment is configured as described below.

224 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

Two Physical Networks

¢ Data Network

Ethernet network for VM data traffic. For experimentation, this physical network is optional. You
can instead connect all VMs to a bridge that is not connected to a physical interface.

* Management Network

This network must exist, as it is used to send sFlow data from the agent to the remote collector.

Two Physical Hosts

The environment assumes the use of two hosts: hostl and hostMon. host is a hypervisor that run Open vSwitch and
has two NICs:

* ethQ is connected to the Data Network. No IP address can be assigned on ethQ because it is part of an OVS
bridge.

* ethl is connected to the Management Network. ethl has an IP address for management traffic, including sFlow.

hostMon can be any computer that can run the sFlow collector. For this cookbook entry, we use sFlowTrend, a free
sFlow collector that is a simple cross-platform Java download. Other sFlow collectors should work equally well.
hostMon has a single NIC, eth0, that is connected to the Management Network. ezh0 has an IP adress that can reach
ethl on hostl.

Two Virtual Machines

This guide uses two virtual machines - v/ and vm2- running on hostI.

Note: For Xen/XenServer, VM interfaces appears as Linux devices with names like vif£1. 0. Other Linux systems
may present these interfaces as vnet 0, vnet1, etc.

Configuration Steps

On hostl, define the following configuration values in your shell environment:

COLLECTOR_IP=10.0.0.1
COLLECTOR_PORT=6343
AGENT_IP=ethl
HEADER_BYTES=128
SAMPLING_N=64
POLLING_SECS=10

Port 6343 (COLLECTOR_PORT) is the default port number for sFlowTrend. If you are using an sFlow collector other
than sFlowTrend, set this value to the appropriate port for your particular collector. Set your own IP address for the
collector in the place of 10.0.0.1 (COLLECTOR_IP). Setting the AGENT_IP value to ethl indicates that the sFlow
agent should send traffic from ethl’s IP address. The other values indicate settings regarding the frequency and type
of packet sampling that sFlow should perform.

Still on hostl, run the following command to create an sFlow configuration and attach it to bridge br0:

5.1. OVS 225

http://www.inmon.com/products/sFlowTrend.php

Open vSwitch, Release 2.9.4

$ ovs-vsctl —-- —--id=@sflow create sflow agent=${AGENT_IP} \
target="\"${COLLECTOR_IP}:S${COLLECTOR_PORT}\"" header=${HEADER_BYTES} \
sampling=${SAMPLING_N} polling=${POLLING_SECS} \
—-— set bridge br0 sflow=@sflow

Make note of the UUID that is returned by this command; this value is necessary to remove the sFlow configuration.

On hostMon, go to the sFlowTrend and click “Install” in the upper right-hand corner. If you have Java installed, this
will download and start the sFlowTrend application. Once sFlowTrend is running, the light in the lower right-hand
corner of the sFlowTrend application should blink green to indicate that the collector is receiving traffic.

The sFlow configuration is now complete, and sFlowTrend on hostMon should be receiving sFlow data from OVS on
hostl.

To configure sFlow on additional bridges, just replace br0 in the above command with a different bridge name.

To remove sFlow configuration from a bridge (in this case, br0), run this command, where “sFlow UUID” is the
UUID returned by the command used to set the sFlow configuration initially:

’$ ovs-vsctl remove bridge br0 sflow <sFlow UUID>

To see all current sets of sFlow configuration parameters, run:

’$ ovs—-vsctl list sflow

Troubleshooting

If sFlow data isn’t being collected and displayed by sFlowTrend, check the following items:

* Make sure the VMs are sending/receiving network traffic over bridge br0, preferably to multiple other hosts and
using a variety of protocols.

* To confirm that the agent is sending traffic, check that running the following command shows that the agent on
the physical server is sending traffic to the collector IP address (change the port below to match the port your
collector is using):

$ tcpdump -ni ethl udp port 6343

If no traffic is being sent, there is a problem with the configuration of OVS. If traffic is being sent but nothing is visible
in the sFlowTrend user interface, this may indicate a configuration problem with the collector.

Check to make sure the host running the collector (hostMon) does not have a firewall that would prevent UDP port
6343 from reaching the collector.

Credit

This document is heavily based on content from Neil McKee at InMon:
e https://mail.openvswitch.org/pipermail/ovs-dev/2010-July/165245 . html
* https://blog.sflow.com/2010/01/open-vswitch.html

Note: The configuration syntax is out of date, but the high-level descriptions are correct.

226 Chapter 5. How-to Guides

http://www.inmon.com/products/sFlowTrend.php
https://mail.openvswitch.org/pipermail/ovs-dev/2010-July/165245.html
https://blog.sflow.com/2010/01/open-vswitch.html

Open vSwitch, Release 2.9.4

5.1.12 Using Open vSwitch with DPDK

This document describes how to use Open vSwitch with DPDK datapath.

Important: Using the DPDK datapath requires building OVS with DPDK support. Refer to Open vSwitch with
DPDK for more information.

Ports and Bridges

ovs-vsctl can be used to set up bridges and other Open vSwitch features. Bridges should be created with a
datapath_type=netdev:

$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

ovs-vsctl can also be used to add DPDK devices. ovs-vswitchd should print the number of dpdk devices found in the
log file:

$ ovs-vsctl add-port br0 dpdk-p0 —-- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0
$ ovs-vsctl add-port br0 dpdk-pl -- set Interface dpdk-pl type=dpdk \

options:dpdk-devargs=0000:01:00.1

Some NICs (i.e. Mellanox ConnectX-3) have only one PCI address associated with multiple ports. Using a PCI device
like above won’t work. Instead, below usage is suggested:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs="class=eth,mac=00:11:22:33:44:55"
$ ovs-vsctl add-port br0 dpdk-pl -- set Interface dpdk-pl type=dpdk \

options:dpdk-devargs="class=eth,mac=00:11:22:33:44:56"

Note: such syntax won’t support hotplug. The hotplug is supposed to work with future DPDK release, v18.05.

After the DPDK ports get added to switch, a polling thread continuously polls DPDK devices and consumes 100% of
the core, as can be checked from t op and ps commands:

$ top -H
$ ps —-elo pid,psr,comm | grep pmd

Creating bonds of DPDK interfaces is slightly different to creating bonds of system interfaces. For DPDK, the interface
type and devargs must be explicitly set. For example:

$ ovs-vsctl add-bond br0 dpdkbond p0 pl \
—-— set Interface pO type=dpdk options:dpdk-devargs=0000:01:00.0 \
—-— set Interface pl type=dpdk options:dpdk-devargs=0000:01:00.1

To stop ovs-vswitchd & delete bridge, run:

$ ovs—appctl -t ovs-vswitchd exit
$ ovs—appctl -t ovsdb-server exit
$ ovs-vsctl del-br br0

PMD Thread Statistics

To show current stats:

5.1. OVS 227

Open vSwitch, Release 2.9.4

’$ ovs—appctl dpif-netdev/pmd-stats-show

To clear previous stats:

’$ ovs—appctl dpif-netdev/pmd-stats-clear

Port/RXQ Assigment to PMD Threads

To show port/rxq assignment:

$ ovs—appctl dpif-netdev/pmd-rxg-show

To change default rxq assignment to pmd threads, rxqs may be manually pinned to desired cores using:

$ ovs-vsctl set Interface <iface> \
other_config:pmd-rxg-affinity=<rxg-affinity-list>

where:
e <rxg-affinity-1list>isaCSV list of <queue-id>:<core—-1id> values

For example:

$ ovs-vsctl set interface dpdk-p0 options:n_rxg=4 \
other_config:pmd-rxg-affinity="0:3,1:7,3:8"

This will ensure:
* Queue #0 pinned to core 3
* Queue #1 pinned to core 7
* Queue #2 not pinned
* Queue #3 pinned to core 8

After that PMD threads on cores where RX queues was pinned will become isolated. This means that this thread
will poll only pinned RX queues.

Warning: If there are no non-isolated PMD threads, non-pinned RX queues will not be polled. Also, if
provided core_1id is not available (ex. this core_id not in pmd-cpu-mask), RX queue will not be polled by
any PMD thread.

If pmd-rxg-affinity is not set for rxgs, they will be assigned to pmds (cores) automatically. The processing cycles that
have been stored for each rxq will be used where known to assign rxqs to pmd based on a round robin of the sorted

rXgs.

For example, in the case where here there are 5 rxgs and 3 cores (e.g. 3,7,8) available, and the measured usage of core
cycles per rxq over the last interval is seen to be:

* Queue #0: 30%
* Queue #1: 80%
¢ Queue #3: 60%
¢ Queue #4: 70%
* Queue #5: 10%

228 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

The rxqs will be assigned to cores 3,7,8 in the following order:
Core 3: Q1 (80%) | Core 7: Q4 (70%) | Q5 (10%) core 8: Q3 (60%) | QO (30%)

To see the current measured usage history of pmd core cycles for each rxq:

$ ovs—appctl dpif-netdev/pmd-rxg-show

Note: A history of one minute is recorded and shown for each rxq to allow for traffic pattern spikes. An rxq’s pmd
core cycles usage changes due to traffic pattern or reconfig changes will take one minute before they are fully reflected
in the stats.

Rxq to pmds assignment takes place whenever there are configuration changes or can be triggered by using:

$ ovs—appctl dpif-netdev/pmd-rxg-rebalance

QoS

Assuming you have a vhost-user port transmitting traffic consisting of packets of size 64 bytes, the following command
would limit the egress transmission rate of the port to ~1,000,000 packets per second:

$ ovs-vsctl set port vhost-user0O gos=@newgos —-- \
--id=@newqos create gos type=egress—-policer other-config:cir=46000000 \
other-config:cbs=2048"

To examine the QoS configuration of the port, run:

’$ ovs—appctl -t ovs-vswitchd gos/show vhost-user0

To clear the QoS configuration from the port and ovsdb, run:

’$ ovs—-vsctl destroy QoS vhost-user0 -- clear Port vhost-user0 gos

Refer to vswitch.xml for more details on egress-policer.

Rate Limiting

Here is an example on Ingress Policing usage. Assuming you have a vhost-user port receiving traffic consisting of
packets of size 64 bytes, the following command would limit the reception rate of the port to ~1,000,000 packets per
second:

$ ovs-vsctl set interface vhost-user0 ingress_policing_rate=368000 \
ingress_policing_burst=1000"

To examine the ingress policer configuration of the port:

’$ ovs-vsctl list interface vhost-user0

To clear the ingress policer configuration from the port:

’$ ovs—-vsctl set interface vhost-user0 ingress_policing_rate=0

Refer to vswitch.xml for more details on ingress-policer.

5.1. OVS 229

Open vSwitch, Release 2.9.4

Flow Control

Flow control can be enabled only on DPDK physical ports. To enable flow control support at tx side while adding a
port, run:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0 options:tx-flow-ctrl=true

Similarly, to enable rx flow control, run:

$ ovs-vsctl add-port br0 dpdk-p0 -- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0 options:rx—-flow-ctrl=true

To enable flow control auto-negotiation, run:

$ ovs-vsctl add-port br0 dpdk-p0 —-- set Interface dpdk-p0 type=dpdk \
options:dpdk-devargs=0000:01:00.0 options:flow-ctrl-autoneg=true

To turn ON the tx flow control at run time for an existing port, run:

’$ ovs—-vsctl set Interface dpdk-p0 options:tx-flow-ctrl=true

The flow control parameters can be turned off by setting false to the respective parameter. To disable the flow
control at tx side, run:

’$ ovs-vsctl set Interface dpdk-p0 options:tx-flow-ctrl=false

pdump

pdump allows you to listen on DPDK ports and view the traffic that is passing on them. To use this utility, one must
have libpcap installed on the system. Furthermore, DPDK must be built with CONFIG_RTE_LIBRTE_PDUMP=y
and CONFIG_RTE_LIBRTE_PMD_PCAP=y.

Warning: A performance decrease is expected when using a monitoring application like the DPDK pdump app.

To use pdump, simply launch OVS as usual, then navigate to the app /pdump directory in DPDK, make the applica-
tion and run like so:

$ sudo ./build/app/dpdk-pdump -- \
——pdump port=0, queue=0, rx—dev=/tmp/pkts.pcap \
--server-socket-path=/usr/local/var/run/openvswitch

The above command captures traffic received on queue 0 of port 0 and stores it in /tmp/pkts.pcap. Other com-
binations of port numbers, queues numbers and pcap locations are of course also available to use. For example, to
capture all packets that traverse port O in a single pcap file:

$ sudo ./build/app/dpdk-pdump -- \
—-—pdump 'port=0, queue=«,rx-dev=/tmp/pkts.pcap,tx-dev=/tmp/pkts.pcap' \
--server-socket-path=/usr/local/var/run/openvswitch

server—-socket-path must be set to the value of ovs_rundir () which typically resolves to /usr/local/
var/run/openvswitch.

Many tools are available to view the contents of the pcap file. Once example is tcpdump. Issue the following command
to view the contents of pkts.pcap:

230 Chapter 5. How-to Guides

Open vSwitch, Release 2.9.4

$ tcpdump -r pkts.pcap

More information on the pdump app and its usage can be found in the DPDK docs.

Jumbo Frames

By default, DPDK ports are configured with standard Ethernet MTU (1500B). To enable Jumbo Frames support for a
DPDK port, change the Interface’s mt u_request attribute to a sufficiently large value. For example, to add a DPDK
Phy port with MTU of 9000:

$ ovs-vsctl add-