

Open vSwitch Documentation Contents

	Open vSwitch Documentation
	How the Documentation is Organised

	First Steps

	Deeper Dive

	The Open vSwitch Project

	Getting Help

	Getting Started
	What Is Open vSwitch?
	Overview

	What’s here?

	Why Open vSwitch?
	The mobility of state

	Responding to network dynamics

	Maintenance of logical tags

	Hardware integration

	Summary

	Installing Open vSwitch
	Installation from Source

	Installation from Packages

	Upgrades

	Others

	Tutorials
	Open vSwitch Advanced Features
	Getting Started

	Using GDB

	Motivation

	Scenario

	Setup

	Implementing Table 0: Admission control

	Testing Table 0

	Implementing Table 1: VLAN Input Processing

	Testing Table 1

	Implementing Table 2: MAC+VLAN Learning for Ingress Port

	Testing Table 2

	Implementing Table 3: Look Up Destination Port

	Testing Table 3

	Implementing Table 4: Output Processing

	Testing Table 4

	OVN Sandbox
	Getting Started

	Using GDB

	Creating OVN Resources

	Using ovn-trace

	OVN OpenStack Tutorial
	Setting Up DevStack

	DevStack preliminaries

	Shortening UUIDs

	Overview

	Switching

	Routing

	Adding a Gateway

	IPv6

	ACLs

	DHCP

	Further Directions

	Deep Dive
	OVS
	Design Decisions In Open vSwitch

	Open vSwitch Datapath Development Guide

	Integration Guide for Centralized Control

	Porting Open vSwitch to New Software or Hardware

	OpenFlow Support in Open vSwitch

	Bonding

	OVSDB Replication Implementation

	The DPDK Datapath

	OVS-on-Hyper-V Design

	Language Bindings

	Testing

	Tracing packets inside Open vSwitch

	C IDL Compound Indexes

	OVN
	OVN Gateway High Availability Plan

	How-to Guides
	OVS
	Open vSwitch with KVM

	Open vSwitch with SELinux

	Open vSwitch with Libvirt

	Open vSwitch with SSL

	Using LISP tunneling

	Connecting VMs Using Tunnels

	Connecting VMs Using Tunnels (Userspace)

	Isolating VM Traffic Using VLANs

	Quality of Service (QoS) Rate Limiting

	How to Use the VTEP Emulator

	Monitoring VM Trafic Using sFlow

	Using Open vSwitch with DPDK

	OVN
	Open Virtual Networking With Docker

	Integration of Containers with OVN and OpenStack

	Reference Guide
	Man Pages
	ovs-test

	ovs-vlan-test

	Open vSwitch FAQ
	Basic Configuration

	Development

	Implementation Details

	General

	Common Configuration Issues

	Using OpenFlow

	Quality of Service (QoS)

	Releases

	Terminology

	VLANs

	VXLANs

	Open vSwitch Internals
	Contributing to Open vSwitch
	Submitting Patches

	Backporting patches

	Open vSwitch Coding Style

	Open vSwitch Windows Datapath Coding Style

	Open vSwitch Documentation Style

	Open vSwitch Library ABI Updates

	Mailing Lists
	ovs-announce

	ovs-discuss

	ovs-dev

	ovs-git

	ovs-build

	bugs

	security

	Patchwork
	pwclient

	Open vSwitch Release Process
	Release Strategy

	Release Numbering

	Release Scheduling

	Contact

	Reporting Bugs in Open vSwitch

	Open vSwitch’s Security Process
	What is a vulnerability?

	Step 1: Reception

	Step 2: Assessment

	Step 3a: Document

	Step 3b: Fix

	Step 4: Embargoed Disclosure

	Step 5: Public Disclosure

	Expectations for Developers with Open vSwitch Repo Access
	Pre-requisites

	Review

	Git conventions

	OVS Committer Grant/Revocation Policy
	Granting Commit Access

	Revoking Commit Access

	Changing the Policy

	Nomination to Grant Commit Access

	Vote to Grant Commit Access

	Vote Results for Grant of Commit Access

	Invitation to Accepted Committer

	Proposal to Remove Commit Access for Inactivity

	Notification of Commit Removal for Inactivity

	Proposal to Revoke Commit Access for Detrimental Behavior

	Vote to Revoke Commit Access

	Vote Results for Revocation of Commit Access

	Notification of Commit Revocation for Detrimental Behavior

	Authors

	Committers

	How Open vSwitch’s Documentation Works
	reStructuredText and Sphinx

	ovs-sphinx-theme

	Read the Docs

	openvswitch.org

Open vSwitch Documentation

How the Documentation is Organised

The Open vSwitch documentation is organised into multiple sections:

	Installation guides guide you through
installing Open vSwitch (OVS) and Open Virtual Network (OVN) on a variety of
different platforms

	Tutorials take you through a series of steps to
configure OVS and OVN in sandboxed environments

	Topic guides provide a high level overview of OVS and
OVN internals and operation

	How-to guides are recipes or use-cases for OVS and OVN.
They are more advanced than the tutorials.

	Frequently Asked Questions provide general insight into
a variety of topics related to configuration and operation of OVS and OVN.

First Steps

Getting started with Open vSwitch (OVS) or Open Virtual Network (OVN) for Open
vSwitch? Start here.

	Overview: What Is Open vSwitch? |
Why Open vSwitch?

	Install: Open vSwitch on Linux, FreeBSD and NetBSD |
Open vSwitch without Kernel Support |
Open vSwitch on NetBSD |
Open vSwitch on Windows |
Open vSwitch on Citrix XenServer |
Open vSwitch with DPDK |
Installation FAQs

	Tutorials: Open vSwitch Advanced Features |
OVN Sandbox |
OVN OpenStack Tutorial

Deeper Dive

	Architecture Design Decisions In Open vSwitch |
OpenFlow Support in Open vSwitch |
Integration Guide for Centralized Control |
Porting Open vSwitch to New Software or Hardware

	DPDK Using Open vSwitch with DPDK |
DPDK vHost User Ports

	Windows OVS-on-Hyper-V Design

	Integrations: Language Bindings

	Reference Guides: Reference Guide

	Testing Testing

	Packaging: Debian Packaging for Open vSwitch |
RHEL 5.6, 6.x Packaging for Open vSwitch |
Fedora, RHEL 7.x Packaging for Open vSwitch

The Open vSwitch Project

Learn more about the Open vSwitch project and about how you can contribute:

	Community: Open vSwitch Release Process |
Authors |
Mailing Lists |
Patchwork |
Reporting Bugs in Open vSwitch |
Open vSwitch’s Security Process

	Contributing: Submitting Patches |
Backporting patches |
Open vSwitch Coding Style |
Open vSwitch Windows Datapath Coding Style

	Maintaining: Committers |
Expectations for Developers with Open vSwitch Repo Access |
OVS Committer Grant/Revocation Policy

	Documentation: Open vSwitch Documentation Style |
Building Open vSwitch Documentation |
How Open vSwitch’s Documentation Works

Getting Help

	Seeing an issue of potential bug? Report problems to bugs@openvswitch.org

	Looking for specific information? Try the Index, Module Index or
the detailed table of contents.

Getting Started

How to get started with Open vSwitch.

	What Is Open vSwitch?
	Overview

	What’s here?

	Why Open vSwitch?
	The mobility of state

	Responding to network dynamics

	Maintenance of logical tags

	Hardware integration

	Summary

	Installing Open vSwitch
	Installation from Source

	Installation from Packages

	Upgrades

	Others

What Is Open vSwitch?

[image: ../_images/overview.png]

Overview

Open vSwitch is a multilayer software switch licensed under the open source
Apache 2 license. Our goal is to implement a production quality switch
platform that supports standard management interfaces and opens the forwarding
functions to programmatic extension and control.

Open vSwitch is well suited to function as a virtual switch in VM environments.
In addition to exposing standard control and visibility interfaces to the
virtual networking layer, it was designed to support distribution across
multiple physical servers. Open vSwitch supports multiple Linux-based
virtualization technologies including Xen/XenServer, KVM, and VirtualBox.

The bulk of the code is written in platform-independent C and is easily ported
to other environments. The current release of Open vSwitch supports the
following features:

	Standard 802.1Q VLAN model with trunk and access ports

	NIC bonding with or without LACP on upstream switch

	NetFlow, sFlow(R), and mirroring for increased visibility

	QoS (Quality of Service) configuration, plus policing

	Geneve, GRE, VXLAN, STT, and LISP tunneling

	802.1ag connectivity fault management

	OpenFlow 1.0 plus numerous extensions

	Transactional configuration database with C and Python bindings

	High-performance forwarding using a Linux kernel module

The included Linux kernel module supports Linux 3.10 and up.

Open vSwitch can also operate entirely in userspace without assistance from
a kernel module. This userspace implementation should be easier to port than
the kernel-based switch. OVS in userspace can access Linux or DPDK devices.
Note Open vSwitch with userspace datapath and non DPDK devices is considered
experimental and comes with a cost in performance.

What’s here?

The main components of this distribution are:

	ovs-vswitchd, a daemon that implements the switch, along with a companion
Linux kernel module for flow-based switching.

	ovsdb-server, a lightweight database server that ovs-vswitchd queries to
obtain its configuration.

	ovs-dpctl, a tool for configuring the switch kernel module.

	Scripts and specs for building RPMs for Citrix XenServer and Red Hat
Enterprise Linux. The XenServer RPMs allow Open vSwitch to be installed on a
Citrix XenServer host as a drop-in replacement for its switch, with
additional functionality.

	ovs-vsctl, a utility for querying and updating the configuration of
ovs-vswitchd.

	ovs-appctl, a utility that sends commands to running Open vSwitch daemons.

Open vSwitch also provides some tools:

	ovs-ofctl, a utility for querying and controlling OpenFlow switches and
controllers.

	ovs-pki, a utility for creating and managing the public-key infrastructure
for OpenFlow switches.

	ovs-testcontroller, a simple OpenFlow controller that may be useful for

Why Open vSwitch?

Hypervisors need the ability to bridge traffic between VMs and with the outside
world. On Linux-based hypervisors, this used to mean using the built-in L2
switch (the Linux bridge), which is fast and reliable. So, it is reasonable to
ask why Open vSwitch is used.

The answer is that Open vSwitch is targeted at multi-server virtualization
deployments, a landscape for which the previous stack is not well suited. These
environments are often characterized by highly dynamic end-points, the
maintenance of logical abstractions, and (sometimes) integration with or
offloading to special purpose switching hardware.

The following characteristics and design considerations help Open vSwitch cope
with the above requirements.

The mobility of state

All network state associated with a network entity (say a virtual machine)
should be easily identifiable and migratable between different hosts. This may
include traditional “soft state” (such as an entry in an L2 learning table), L3
forwarding state, policy routing state, ACLs, QoS policy, monitoring
configuration (e.g. NetFlow, IPFIX, sFlow), etc.

Open vSwitch has support for both configuring and migrating both slow
(configuration) and fast network state between instances. For example, if a VM
migrates between end-hosts, it is possible to not only migrate associated
configuration (SPAN rules, ACLs, QoS) but any live network state (including,
for example, existing state which may be difficult to reconstruct). Further,
Open vSwitch state is typed and backed by a real data-model allowing for the
development of structured automation systems.

Responding to network dynamics

Virtual environments are often characterized by high-rates of change. VMs
coming and going, VMs moving backwards and forwards in time, changes to the
logical network environments, and so forth.

Open vSwitch supports a number of features that allow a network control system
to respond and adapt as the environment changes. This includes simple
accounting and visibility support such as NetFlow, IPFIX, and sFlow. But
perhaps more useful, Open vSwitch supports a network state database (OVSDB)
that supports remote triggers. Therefore, a piece of orchestration software can
“watch” various aspects of the network and respond if/when they change. This is
used heavily today, for example, to respond to and track VM migrations.

Open vSwitch also supports OpenFlow as a method of exporting remote access to
control traffic. There are a number of uses for this including global network
discovery through inspection of discovery or link-state traffic (e.g. LLDP,
CDP, OSPF, etc.).

Maintenance of logical tags

Distributed virtual switches (such as VMware vDS and Cisco’s Nexus 1000V) often
maintain logical context within the network through appending or manipulating
tags in network packets. This can be used to uniquely identify a VM (in a
manner resistant to hardware spoofing), or to hold some other context that is
only relevant in the logical domain. Much of the problem of building a
distributed virtual switch is to efficiently and correctly manage these tags.

Open vSwitch includes multiple methods for specifying and maintaining tagging
rules, all of which are accessible to a remote process for orchestration.
Further, in many cases these tagging rules are stored in an optimized form so
they don’t have to be coupled with a heavyweight network device. This allows,
for example, thousands of tagging or address remapping rules to be configured,
changed, and migrated.

In a similar vein, Open vSwitch supports a GRE implementation that can handle
thousands of simultaneous GRE tunnels and supports remote configuration for
tunnel creation, configuration, and tear-down. This, for example, can be used
to connect private VM networks in different data centers.

Hardware integration

Open vSwitch’s forwarding path (the in-kernel datapath) is designed to be
amenable to “offloading” packet processing to hardware chipsets, whether housed
in a classic hardware switch chassis or in an end-host NIC. This allows for the
Open vSwitch control path to be able to both control a pure software
implementation or a hardware switch.

There are many ongoing efforts to port Open vSwitch to hardware chipsets. These
include multiple merchant silicon chipsets (Broadcom and Marvell), as well as a
number of vendor-specific platforms. The “Porting” section in the documentation
discusses how one would go about making such a port.

The advantage of hardware integration is not only performance within
virtualized environments. If physical switches also expose the Open vSwitch
control abstractions, both bare-metal and virtualized hosting environments can
be managed using the same mechanism for automated network control.

Summary

In many ways, Open vSwitch targets a different point in the design space than
previous hypervisor networking stacks, focusing on the need for automated and
dynamic network control in large-scale Linux-based virtualization environments.

The goal with Open vSwitch is to keep the in-kernel code as small as possible
(as is necessary for performance) and to re-use existing subsystems when
applicable (for example Open vSwitch uses the existing QoS stack). As of Linux
3.3, Open vSwitch is included as a part of the kernel and packaging for the
userspace utilities are available on most popular distributions.

Installing Open vSwitch

A collection of guides detailing how to install Open vSwitch in a variety of
different environments and using different configurations.

Installation from Source

	Open vSwitch on Linux, FreeBSD and NetBSD
	Obtaining Open vSwitch Sources

	Build Requirements

	Installation Requirements

	Bootstrapping

	Configuring

	Building

	Starting

	Validating

	Upgrading

	Hot Upgrading

	Reporting Bugs

	Open vSwitch on NetBSD

	Open vSwitch on Windows
	Build Requirements

	Install Requirements

	Bootstrapping

	Configuring

	Building

	Starting

	Validating

	Windows Services

	Windows CI Service

	TODO

	Open vSwitch on Citrix XenServer
	Building

	Build Parameters

	Installing Open vSwitch for XenServer

	Open vSwitch Boot Sequence on XenServer

	Notes

	Reporting Bugs

	Open vSwitch without Kernel Support
	Building and Installing

	Using the Userspace Datapath with ovs-vswitchd

	Firewall Rules

	Other Settings

	Reporting Bugs

	Open vSwitch with DPDK
	Build requirements

	Installing

	Setup

	Validating

	Performance Tuning

	Limitations

	Reporting Bugs

Installation from Packages

Open vSwitch is packaged on a variety of distributions. The tooling required to
build these packages is included in the Open vSwitch tree. The instructions are
provided below.

	Distributions packaging Open vSwitch
	Debian

	Fedora

	Red Hat

	OpenSuSE

	Debian Packaging for Open vSwitch
	Before You Begin

	Building Open vSwitch Debian packages

	Installing .deb Packages

	Reporting Bugs

	Fedora, RHEL 7.x Packaging for Open vSwitch
	Build Requirements

	Bootstraping

	Configuring

	Building

	Installing

	Reporting Bugs

	RHEL 5.6, 6.x Packaging for Open vSwitch
	Prerequisites

	Build Requirements

	Bootstrapping and Configuring

	Building

	Red Hat Network Scripts Integration

	Reporting Bugs

Upgrades

	OVN Upgrades
	Release Notes

	OVS

	Upgrade ovn-controller

	Upgrade OVN Databases and ovn-northd

	Upgrading OVN Integration

Others

	Bash command-line completion scripts
	ovs-appctl-bashcomp

	ovs-vsctl-bashcomp

	Usage

	Tests

	Open vSwitch Documentation
	Build Requirements

	Configuring

	Building

Open vSwitch on Linux, FreeBSD and NetBSD

This document describes how to build and install Open vSwitch on a generic
Linux, FreeBSD, or NetBSD host. For specifics around installation on a specific
platform, refer to one of the other installation guides listed in Installing Open vSwitch.

Obtaining Open vSwitch Sources

The canonical location for Open vSwitch source code is its Git
repository, which you can clone into a directory named “ovs” with:

$ git clone https://github.com/openvswitch/ovs.git

Cloning the repository leaves the “master” branch initially checked
out. This is the right branch for general development. If, on the
other hand, if you want to build a particular released version, you
can check it out by running a command such as the following from the
“ovs” directory:

$ git checkout v2.7.0

The repository also has a branch for each release series. For
example, to obtain the latest fixes in the Open vSwitch 2.7.x release
series, which might include bug fixes that have not yet been in any
released version, you can check it out from the “ovs” directory with:

$ git checkout origin/branch-2.7

If you do not want to use Git, you can also obtain tarballs for Open
vSwitch release versions via http://openvswitch.org/download/, or
download a ZIP file for any snapshot from the web interface at
https://github.com/openvswitch/ovs.

Build Requirements

To compile the userspace programs in the Open vSwitch distribution, you will
need the following software:

	GNU make

	A C compiler, such as:

	GCC 4.6 or later.

	Clang 3.4 or later.

	MSVC 2013. Refer to Open vSwitch on Windows for additional Windows build
instructions.

While OVS may be compatible with other compilers, optimal support for atomic
operations may be missing, making OVS very slow (see lib/ovs-atomic.h).

	libssl, from OpenSSL, is optional but recommended if you plan to connect the
Open vSwitch to an OpenFlow controller. libssl is required to establish
confidentiality and authenticity in the connections from an Open vSwitch to
an OpenFlow controller. If libssl is installed, then Open vSwitch will
automatically build with support for it.

	libcap-ng, written by Steve Grubb, is optional but recommended. It is
required to run OVS daemons as a non-root user with dropped root privileges.
If libcap-ng is installed, then Open vSwitch will automatically build with
support for it.

	Python 2.7. You must also have the Python six library version 1.4.0
or later.

On Linux, you may choose to compile the kernel module that comes with the Open
vSwitch distribution or to use the kernel module built into the Linux kernel
(version 3.3 or later). See the Open vSwitch FAQ question “What features are
not available in the Open vSwitch kernel datapath that ships as part of the
upstream Linux kernel?” for more information on this trade-off. You may also
use the userspace-only implementation, at some cost in features and
performance. Refer to Open vSwitch without Kernel Support for details.

To compile the kernel module on Linux, you must also install the
following:

	A supported Linux kernel version.

For optional support of ingress policing, you must enable kernel
configuration options NET_CLS_BASIC, NET_SCH_INGRESS, and
NET_ACT_POLICE, either built-in or as modules. NET_CLS_POLICE is
obsolete and not needed.)

On kernels before 3.11, the ip_gre module, for GRE tunnels over IP
(NET_IPGRE), must not be loaded or compiled in.

To configure HTB or HFSC quality of service with Open vSwitch, you must
enable the respective configuration options.

To use Open vSwitch support for TAP devices, you must enable CONFIG_TUN.

	To build a kernel module, you need the same version of GCC that was used to
build that kernel.

	A kernel build directory corresponding to the Linux kernel image the module
is to run on. Under Debian and Ubuntu, for example, each linux-image package
containing a kernel binary has a corresponding linux-headers package with
the required build infrastructure.

If you are working from a Git tree or snapshot (instead of from a distribution
tarball), or if you modify the Open vSwitch build system or the database
schema, you will also need the following software:

	Autoconf version 2.63 or later.

	Automake version 1.10 or later.

	libtool version 2.4 or later. (Older versions might work too.)

To run the unit tests, you also need:

	Perl. Version 5.10.1 is known to work. Earlier versions should also
work.

The datapath tests for userspace and Linux datapaths also rely upon:

	pyftpdlib. Version 1.2.0 is known to work. Earlier versions should
also work.

	GNU wget. Version 1.16 is known to work. Earlier versions should also
work.

	netcat. Several common implementations are known to work.

	curl. Version 7.47.0 is known to work. Earlier versions should also work.

	tftpy. Version 0.6.2 is known to work. Earlier versions should also work.

The ovs-vswitchd.conf.db(5) manpage will include an E-R diagram, in formats
other than plain text, only if you have the following:

	dot from graphviz (http://www.graphviz.org/).

	Perl. Version 5.10.1 is known to work. Earlier versions should also
work.

If you are going to extensively modify Open vSwitch, consider installing the
following to obtain better warnings:

	“sparse” version 0.4.4 or later
(https://www.kernel.org/pub/software/devel/sparse/dist/).

	GNU make.

	clang, version 3.4 or later

	flake8 along with the hacking flake8 plugin (for Python code). The automatic
flake8 check that runs against Python code has some warnings enabled that
come from the “hacking” flake8 plugin. If it’s not installed, the warnings
just won’t occur until it’s run on a system with “hacking” installed.

You may find the ovs-dev script found in utilities/ovs-dev.py useful.

Installation Requirements

The machine you build Open vSwitch on may not be the one you run it on. To
simply install and run Open vSwitch you require the following software:

	Shared libraries compatible with those used for the build.

	On Linux, if you want to use the kernel-based datapath (which is the most
common use case), then a kernel with a compatible kernel module. This
can be a kernel module built with Open vSwitch (e.g. in the previous
step), or the kernel module that accompanies Linux 3.3 and later. Open
vSwitch features and performance can vary based on the module and the
kernel. Refer to Releases for more information.

	For optional support of ingress policing on Linux, the “tc” program
from iproute2 (part of all major distributions and available at
https://wiki.linuxfoundation.org/networking/iproute2).

	Python 2.7. You must also have the Python six library version 1.4.0
or later.

On Linux you should ensure that /dev/urandom exists. To support TAP
devices, you must also ensure that /dev/net/tun exists.

Bootstrapping

This step is not needed if you have downloaded a released tarball. If
you pulled the sources directly from an Open vSwitch Git tree or got a
Git tree snapshot, then run boot.sh in the top source directory to build
the “configure” script:

$./boot.sh

Configuring

Configure the package by running the configure script. You can usually
invoke configure without any arguments. For example:

$./configure

By default all files are installed under /usr/local. Open vSwitch also
expects to find its database in /usr/local/etc/openvswitch by default. If
you want to install all files into, e.g., /usr and /var instead of
/usr/local and /usr/local/var and expect to use /etc/openvswitch as
the default database directory, add options as shown here:

$./configure --prefix=/usr --localstatedir=/var --sysconfdir=/etc

Note

Open vSwitch installed with packages like .rpm (e.g. via yum install or
rpm -ivh) and .deb (e.g. via apt-get install or dpkg -i) use the
above configure options.

 Open vSwitch on NetBSD

Open vSwitch on NetBSD

On NetBSD, you might want to install requirements from pkgsrc. In that case,
you need at least the following packages.

	automake

	libtool-base

	gmake

	python27

	py27-six

	py27-xml

Some components have additional requirements. Refer to Open vSwitch on Linux, FreeBSD and NetBSD for more
information.

Assuming you are running NetBSD/amd64 6.1.2, you can download and install
pre-built binary packages as the following:

$ PKG_PATH=http://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/amd64/7.0.2/All/
$ export PKG_PATH
$ pkg_add automake libtool-base gmake python27 py27-six py27-xml \
 pkg_alternatives

Note

You might get some warnings about minor version mismatch. These can be safely
ignored.

 Open vSwitch on Windows

Open vSwitch on Windows

Build Requirements

Open vSwitch on Linux uses autoconf and automake for generating Makefiles. It
will be useful to maintain the same build system while compiling on Windows
too. One approach is to compile Open vSwitch in a MinGW environment that
contains autoconf and automake utilities and then use Visual C++ as a compiler
and linker.

The following explains the steps in some detail.

	Mingw

Install Mingw on a Windows machine by following the instructions on
mingw.org [http://www.mingw.org/wiki/Getting_Started].

This should install mingw at C:\Mingw and msys at C:\Mingw\msys. Add
C:\MinGW\bin and C:\Mingw\msys\1.0\bin to PATH environment variable
of Windows.

You can either use the MinGW installer or the command line utility
mingw-get to install both the base packages and additional packages like
automake and autoconf(version 2.68).

Also make sure that /mingw mount point exists. If its not, please
add/create the following entry in /etc/fstab:

'C:/MinGW /mingw'.

	Python

Install the latest Python 2.x from python.org and verify that its path is
part of Windows’ PATH environment variable.
We require that you have Python six and pypiwin32 libraries installed.
The libraries can be installed via pip command:

$ pip install six
$ pip install pypiwin32

	Visual Studio

You will need at least Visual Studio 2013 (update 4) to compile userspace
binaries. In addition to that, if you want to compile the kernel module you
will also need to install Windows Driver Kit (WDK) 8.1 Update.

It is important to get the Visual Studio related environment variables and to
have the $PATH inside the bash to point to the proper compiler and linker.
One easy way to achieve this for VS2013 is to get into the “VS2013 x86 Native
Tools Command Prompt” (in a default installation of Visual Studio 2013 this
can be found under the following location: C:\Program Files (x86)\Microsoft
Visual Studio 12.0\Common7\Tools\Shortcuts) and through it enter into the
bash shell available from msys by typing bash --login.

There is support for generating 64 bit binaries too. To compile under x64,
open the “VS2013 x64 Native Tools Command Prompt” (if your current running OS
is 64 bit) or “VS2013 x64 Cross Tools Command Prompt” (if your current
running OS is not 64 bit) instead of opening its x86 variant. This will
point the compiler and the linker to their 64 bit equivalent.

If after the above step, a which link inside MSYS’s bash says,
/bin/link.exe, rename /bin/link.exe to something else so that the
Visual studio’s linker is used. You should also see a ‘which sort’ report
/bin/sort.exe.

	pthreads-win32

For pthread support, install the library, dll and includes of pthreads-win32
project from sourceware [ftp://sourceware.org/pub/pthreads-win32/prebuilt-dll-2-9-1-release] to a
directory (e.g.: C:/pthread). You should add the pthread-win32’s dll path
(e.g.: C:\pthread\dll\x86) to the Windows’ PATH environment variable.

	OpenSSL

To get SSL support for Open vSwitch on Windows, you will need to install
OpenSSL for Windows [https://wiki.openssl.org/index.php/Binaries]

Note down the directory where OpenSSL is installed (e.g.:
C:/OpenSSL-Win32) for later use.

Note

Commands prefixed by $ must be run in the Bash shell provided by MinGW.
Open vSwitch commands, such as ovs-dpctl are shown running under the DOS
shell (cmd.exe), as indicated by the > prefix, but will also run
under Bash. The remainder, prefixed by >, are PowerShell commands and
must be run in PowerShell.

 Open vSwitch on Citrix XenServer

Open vSwitch on Citrix XenServer

This document describes how to build and install Open vSwitch on a Citrix
XenServer host. If you want to install Open vSwitch on a generic Linux or BSD
host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

Open vSwitch should work with XenServer 5.6.100 and later. However, Open
vSwitch requires Python 2.7 or later, so using Open vSwitch with XenServer 6.5
or earlier requires installing Python 2.7.

Building

You may build from an Open vSwitch distribution tarball or from an Open vSwitch
Git tree. The recommended build environment to build RPMs for Citrix XenServer
is the DDK VM available from Citrix.

	If you are building from an Open vSwitch Git tree, then you will need to
first create a distribution tarball by running:

$./boot.sh
$./configure
$ make dist

You cannot run this in the DDK VM, because it lacks tools that are necessary
to bootstrap the Open vSwitch distribution. Instead, you must run this on a
machine that has the tools listed in Installation Requirements as
prerequisites for building from a Git tree.

	Copy the distribution tarball into /usr/src/redhat/SOURCES inside
the DDK VM.

	In the DDK VM, unpack the distribution tarball into a temporary directory
and “cd” into the root of the distribution tarball.

	To build Open vSwitch userspace, run:

$ rpmbuild -bb xenserver/openvswitch-xen.spec

This produces three RPMs in /usr/src/redhat/RPMS/i386:

	openvswitch

	openvswitch-modules-xen

	openvswitch-debuginfo

The above command automatically runs the Open vSwitch unit tests. To
disable the unit tests, run:

$ rpmbuild -bb --without check xenserver/openvswitch-xen.spec

Build Parameters

openvswitch-xen.spec needs to know a number of pieces of information about
the XenServer kernel. Usually, it can figure these out for itself, but if it
does not do it correctly then you can specify them yourself as parameters to
the build. Thus, the final rpmbuild step above can be elaborated as:

$ VERSION=<Open vSwitch version>
$ KERNEL_NAME=<Xen Kernel name>
$ KERNEL_VERSION=<Xen Kernel version>
$ KERNEL_FLAVOR=<Xen Kernel flavor(suffix)>
$ rpmbuild \
 -D "openvswitch_version $VERSION" \
 -D "kernel_name $KERNEL_NAME" \
 -D "kernel_version $KERNEL_VERSION" \
 -D "kernel_flavor $KERNEL_FLAVOR" \
 -bb xenserver/openvswitch-xen.spec

where:

	<openvswitch version>

	is the version number that appears in the name of the Open vSwitch tarball,
e.g. 0.90.0.

	<Xen Kernel name>

	is the name of the XenServer kernel package, e.g. kernel-xen or
kernel-NAME-xen, without the kernel- prefix.

	<Xen Kernel version>

	is the output of:

$ rpm -q --queryformat "%{Version}-%{Release}" <kernel-devel-package>,

e.g. 2.6.32.12-0.7.1.xs5.6.100.323.170596, where
<kernel-devel-package> is the name of the -devel package
corresponding to <Xen Kernel name>.

	<Xen Kernel flavor (suffix)>

	is either xen or kdump, where xen flavor is the main running
kernel flavor and the kdump flavor is the crashdump kernel flavor.
Commonly, one would specify xen here.

For XenServer 6.5 or above, the kernel version naming no longer contains
KERNEL_FLAVOR. In fact, only providing the uname -r output is enough. So,
the final rpmbuild step changes to:

$ KERNEL_UNAME=<`uname -r` output>
$ rpmbuild \
 -D "kenel_uname $KERNEL_UNAME" \
 -bb xenserver/openvswitch-xen.spec

Installing Open vSwitch for XenServer

To install Open vSwitch on a XenServer host, or to upgrade to a newer version,
copy the openvswitch and openvswitch-modules-xen RPMs to that host with
scp, then install them with rpm -U, e.g.:

$ scp openvswitch-$VERSION-1.i386.rpm \
 openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.i386.rpm \
 root@<host>:
Enter <host>'s root password.
$ ssh root@<host>
Enter <host>'s root password again.
$ rpm -U openvswitch-$VERSION-1.i386.rpm \
 openvswitch-modules-xen-$XEN_KERNEL_VERSION-$VERSION-1.i386.rpm

To uninstall Open vSwitch from a XenServer host, remove the packages:

$ ssh root@<host>
Enter <host>'s root password again.
$ rpm -e openvswitch openvswitch-modules-xen-$XEN_KERNEL_VERSION

After installing or uninstalling Open vSwitch, the XenServer should be rebooted
as soon as possible.

Open vSwitch Boot Sequence on XenServer

When Open vSwitch is installed on XenServer, its startup script
/etc/init.d/openvswitch runs early in boot. It does roughly the following:

	Loads the OVS kernel module, openvswitch.

	Starts ovsdb-server, the OVS configuration database.

	XenServer expects there to be no bridges configured at startup, but the OVS
configuration database likely still has bridges configured from before
reboot. To match XenServer expectations, the startup script deletes all
configured bridges from the database.

	Starts ovs-vswitchd, the OVS switching daemon.

At this point in the boot process, then, there are no Open vSwitch bridges,
even though all of the Open vSwitch daemons are running. Later on in boot,
/etc/init.d/management-interface (part of XenServer, not Open vSwitch)
creates the bridge for the XAPI management interface by invoking
/opt/xensource/libexec/interface-reconfigure. Normally this program
consults XAPI’s database to obtain information about how to configure the
bridge, but XAPI is not running yet(*) so it instead consults
/var/xapi/network.dbcache, which is a cached copy of the most recent
network configuration.

	(*) Even if XAPI were running, if this XenServer node is a pool slave then the

	query would have to consult the master, which requires network access,
which begs the question of how to configure the management interface.

XAPI starts later on in the boot process. XAPI can then create other bridges
on demand using /opt/xensource/libexec/interface-reconfigure. Now that
XAPI is running, that program consults XAPI directly instead of reading the
cache.

As part of its own startup, XAPI invokes the Open vSwitch XAPI plugin script
/etc/xapi.d/openvswitch-cfg-update passing the update command. The
plugin script does roughly the following:

	Calls /opt/xensource/libexec/interface-reconfigure with the rewrite
command, to ensure that the network cache is up-to-date.

	Queries the Open vSwitch manager setting (named vswitch_controller) from
the XAPI database for the XenServer pool.

	If XAPI and OVS are configured for different managers, or if OVS is
configured for a manager but XAPI is not, runs ovs-vsctl emer-reset to
bring the Open vSwitch configuration to a known state. One effect of
emer-reset is to deconfigure any manager from the OVS database.

	If XAPI is configured for a manager, configures the OVS manager to match with
ovs-vsctl set-manager.

Notes

	The Open vSwitch boot sequence only configures an OVS configuration database
manager. There is no way to directly configure an OpenFlow controller on
XenServer and, as a consequence of the step above that deletes all of the
bridges at boot time, controller configuration only persists until XenServer
reboot. The configuration database manager can, however, configure
controllers for bridges. See the BUGS section of ovs-testcontroller(8) for
more information on this topic.

	The Open vSwitch startup script automatically adds a firewall rule to allow
GRE traffic. This rule is needed for the XenServer feature called “Cross-Host
Internal Networks” (CHIN) that uses GRE. If a user configures tunnels other
than GRE (ex: Geneve, VXLAN, LISP), they will have to either manually add a
iptables firewall rule to allow the tunnel traffic or add it through a
startup script (Please refer to the “enable-protocol” command in the
ovs-ctl(8) manpage).

Reporting Bugs

Please report problems to bugs@openvswitch.org.

 Open vSwitch without Kernel Support

Open vSwitch without Kernel Support

Open vSwitch can operate, at a cost in performance, entirely in userspace,
without assistance from a kernel module. This file explains how to install
Open vSwitch in such a mode.

This version of Open vSwitch should be built manually with configure and
make. Debian packaging for Open vSwitch is also included, but it has not
been recently tested, and so Debian packages are not a recommended way to use
this version of Open vSwitch.

Warning

The userspace-only mode of Open vSwitch without DPDK is considered
experimental. It has not been thoroughly tested.

 Open vSwitch with DPDK

Open vSwitch with DPDK

This document describes how to build and install Open vSwitch using a DPDK
datapath. Open vSwitch can use the DPDK library to operate entirely in
userspace.

See also

The releases FAQ lists support for the required
versions of DPDK for each version of Open vSwitch.

 Distributions packaging Open vSwitch

Distributions packaging Open vSwitch

This document lists various popular distributions packaging Open vSwitch.
Open vSwitch is packaged by various distributions for multiple platforms and
architectures.

Note

The packaged version available with distributions may not be latest
Open vSwitch release.

 Debian Packaging for Open vSwitch

Debian Packaging for Open vSwitch

This document describes how to build Debian packages for Open vSwitch. To
install Open vSwitch on Debian without building Debian packages, refer to
Open vSwitch on Linux, FreeBSD and NetBSD instead.

Note

These instructions should also work on Ubuntu and other Debian derivative
distributions.

 Fedora, RHEL 7.x Packaging for Open vSwitch

Fedora, RHEL 7.x Packaging for Open vSwitch

This document provides instructions for building and installing Open vSwitch
RPM packages on a Fedora Linux host. Instructions for the installation of Open
vSwitch on a Fedora Linux host without using RPM packages can be found in the
Open vSwitch on Linux, FreeBSD and NetBSD.

These instructions have been tested with Fedora 23, and are also applicable for
RHEL 7.x and its derivatives, including CentOS 7.x and Scientific Linux 7.x.

Build Requirements

To build packages for a Fedora Linux host, you will need the packages described
in the Open vSwitch on Linux, FreeBSD and NetBSD. Specific packages (by package name) include:

	rpm-build

	autoconf automake libtool

	systemd-units openssl openssl-devel

	python2-devel python3-devel

	python2 python2-twisted python2-zope-interface python2-six

	desktop-file-utils

	groff graphviz

	procps-ng

	checkpolicy selinux-policy-devel

And (optionally):

	libcap-ng libcap-ng-devel

	dpdk-devel

Bootstraping

Refer to Bootstrapping.

Configuring

Refer to Configuring.

Building

User Space RPMs

To build Open vSwitch user-space RPMs, execute the following from the directory
in which ./configure was executed:

$ make rpm-fedora

This will create the RPMs openvswitch, python-openvswitch,
openvswitch-test, openvswitch-devel, openvswitch-ovn-common,
openvswitch-ovn-central, openvswitch-ovn-host, openvswitch-ovn-vtep,
openvswitch-ovn-docker, and openvswitch-debuginfo.

To enable DPDK support in the openvswitch package, the --with dpdk option
can be added:

$ make rpm-fedora RPMBUILD_OPT="--with dpdk --without check"

You can also have the above commands automatically run the Open vSwitch unit
tests. This can take several minutes.

$ make rpm-fedora RPMBUILD_OPT="--with check"

Kernel OVS Tree Datapath RPM

To build the Open vSwitch kernel module for the currently running kernel
version, run:

$ make rpm-fedora-kmod

To build the Open vSwitch kernel module for another kernel version, the desired
kernel version can be specified via the kversion macro. For example:

$ make rpm-fedora-kmod \
 RPMBUILD_OPT='-D "kversion 4.3.4-300.fc23.x86_64"'

Installing

RPM packages can be installed by using the command rpm -i. Package
installation requires superuser privileges.

The openvswitch-kmod RPM should be installed first if the Linux OVS tree
datapath module is to be used. The openvswitch-kmod RPM should not be
installed if only the in-tree Linux datapath or user-space datapath is needed.
Refer to the Open vSwitch FAQ for more information about the various Open
vSwitch datapath options.

In most cases only the openvswitch RPM will need to be installed. The
python-openvswitch, openvswitch-test, openvswitch-devel, and
openvswitch-debuginfo RPMs are optional unless required for a specific
purpose.

The openvswitch-ovn-* packages are only needed when using OVN.

Refer to the RHEL README [https://github.com/openvswitch/ovs/blob/master/rhel/README.RHEL.rst] for additional usage and configuration
information.

Reporting Bugs

Report problems to bugs@openvswitch.org.

 RHEL 5.6, 6.x Packaging for Open vSwitch

RHEL 5.6, 6.x Packaging for Open vSwitch

This document describes how to build and install Open vSwitch on a Red Hat
Enterprise Linux (RHEL) host. If you want to install Open vSwitch on a generic
Linux host, refer to Open vSwitch on Linux, FreeBSD and NetBSD instead.

We have tested these instructions with RHEL 5.6 and RHEL 6.0.

For RHEL 7.x (or derivatives, such as CentOS 7.x), you should follow the
instructions in the Fedora, RHEL 7.x Packaging for Open vSwitch. The Fedora spec files are used for RHEL
7.x.

Prerequisites

You may build from an Open vSwitch distribution tarball or from an Open vSwitch
Git tree.

The default RPM build directory, _topdir, has five directories in the
top-level.

	BUILD/

	where the software is unpacked and built

	RPMS/

	where the newly created binary package files are written

	SOURCES/

	contains the original sources, patches, and icon files

	SPECS/

	contains the spec files for each package to be built

	SRPMS/

	where the newly created source package files are written

Before you begin, note the RPM sources directory on your version of RHEL. The
command rpmbuild --showrc will show the configuration for each of those
directories. Alternatively, the command rpm --eval '%{_topdir}' shows the
current configuration for the top level directory and the command rpm --eval
'%{_sourcedir}' does the same for the sources directory. On RHEL 5, the
default RPM _topdir is /usr/src/redhat and the default RPM sources
directory is /usr/src/redhat/SOURCES. On RHEL 6, the default _topdir is
$HOME/rpmbuild and the default RPM sources directory is
$HOME/rpmbuild/SOURCES.

Build Requirements

To compile the RPMs, you will need to install the packages described in the
Open vSwitch on Linux, FreeBSD and NetBSD along with some additional packages. These can be installed with
the below command:

$ yum install gcc make python-devel openssl-devel kernel-devel graphviz \
 kernel-debug-devel autoconf automake rpm-build redhat-rpm-config \
 libtool checkpolicy selinux-policy-devel

Bootstrapping and Configuring

If you are building from a distribution tarball, skip to Building.
If not, you must be building from an Open vSwitch Git tree. Determine what
version of Autoconf is installed (e.g. run autoconf --version). If it is
not at least version 2.63, then you must upgrade or use another machine to
build the packages.

Assuming all requirements have been met, build the tarball by running:

$./boot.sh
$./configure
$ make dist

You must run this on a machine that has the tools listed in
Build Requirements as prerequisites for building from a Git tree.
Afterward, proceed with the rest of the instructions using the distribution
tarball.

Now you have a distribution tarball, named something like
openvswitch-x.y.z.tar.gz. Copy this file into the RPM sources directory,
e.g.:

$ cp openvswitch-x.y.z.tar.gz $HOME/rpmbuild/SOURCES

Broken build symlink

Some versions of the RHEL 6 kernel-devel package contain a broken build
symlink. If you are using such a version, you must fix the problem before
continuing.

To find out whether you are affected, run:

$ cd /lib/modules/<version>
$ ls -l build/

where <version> is the version number of the RHEL 6 kernel.

Note

The trailing slash in the final command is important. Be sure to include
it.

 OVN Upgrades

OVN Upgrades

Since OVN is a distributed system, special consideration must be given to
the process used to upgrade OVN across a deployment. This document discusses
the recommended upgrade process.

Release Notes

You should always check the OVS and OVN release notes (NEWS file) for any
release specific notes on upgrades.

OVS

OVN depends on and is included with OVS. It’s expected that OVS and OVN are
upgraded together, partly for convenience. OVN is included in OVS releases
so it’s easiest to upgrade them together. OVN may also make use of new
features of OVS only available in that release.

Upgrade ovn-controller

You should start by upgrading ovn-controller on each host it’s running on.
First, you upgrade the OVS and OVN packages. Then, restart the
ovn-controller service. You can restart with ovn-ctl:

$ sudo /usr/share/openvswitch/scripts/ovn-ctl restart_controller

or with systemd:

$ sudo systemd restart ovn-controller

Upgrade OVN Databases and ovn-northd

The OVN databases and ovn-northd should be upgraded next. Since ovn-controller
has already been upgraded, it will be ready to operate on any new functionality
specified by the database or logical flows created by ovn-northd.

Upgrading the OVN packages installs everything needed for an upgrade. The only
step required after upgrading the packages is to restart ovn-northd, which
automatically restarts the databases and upgrades the database schema, as well.

You may perform this restart using the ovn-ctl script:

$ sudo /usr/share/openvswitch/scripts/ovn-ctl restart_northd

or if you’re using a Linux distribution with systemd:

$ sudo systemctl restart ovn-northd

Upgrading OVN Integration

Lastly, you may also want to upgrade integration with OVN that you may be
using. For example, this could be the OpenStack Neutron driver or
ovn-kubernetes.

OVN’s northbound database schema is a backwards compatible interface, so
you should be able to safely complete an OVN upgrade before upgrading
any integration in use.

 Bash command-line completion scripts

Bash command-line completion scripts

There are two completion scripts available: ovs-appctl-bashcomp.bash and
ovs-vsctl-bashcomp.bash.

ovs-appctl-bashcomp

ovs-appctl-bashcomp.bash adds bash command-line completion support for
ovs-appctl, ovs-dpctl, ovs-ofctl and ovsdb-tool commands.

Features

	Display available completion or complete on unfinished user input (long
option, subcommand, and argument).

	Subcommand hints

	Convert between keywords like bridge, port, interface, or dp
and the available record in ovsdb.

Limitations

	Only supports a small set of important keywords (dp, datapath,
bridge, switch, port, interface, iface).

	Does not support parsing of nested options. For example:

$ ovsdb-tool create [db [schema]]

	Does not support expansion on repeated argument. For example:

$ ovs-dpctl show [dp...]).

	Only supports matching on long options, and only in the format --option
[arg]. Do not use --option=[arg].

ovs-vsctl-bashcomp

ovs-vsctl-bashcomp.bash adds Bash command-line completion support for
ovs-vsctl command.

Features

	Display available completion and complete on user input for global/local
options, command, and argument.

	Query database and expand keywords like table, record, column, or
key, to available completions.

	Deal with argument relations like ‘one and more’, ‘zero or one’.

	Complete multiple ovs-vsctl commands cascaded via --.

Limitations

Completion of very long ovs-vsctl commands can take up to several seconds.

Usage

The bashcomp scripts should be placed at /etc/bash_completion.d/ to be
available for all bash sessions. Running make install will place the
scripts to $(sysconfdir)/bash_completion.d/, thus, the user should specify
--sysconfdir=/etc at configuration. If OVS is installed from packages, the
scripts will automatically be placed inside /etc/bash_completion.d/.

If you just want to run the scripts in one bash, you can remove them from
/etc/bash_completion.d/ and run the scripts via .
ovs-appctl-bashcomp.bash or . ovs-vsctl-bashcomp.bash.

Tests

Unit tests are added in tests/completion.at and integrated into autotest
framework. To run the tests, just run make check.

 Open vSwitch Documentation

Open vSwitch Documentation

This document describes how to build the OVS documentation for use offline. A
continuously updated, online version can be found at docs.openvswitch.org [http://docs.openvswitch.org].

Note

These instructions provide information on building the documentation locally.
For information on writing documentation, refer to
Open vSwitch Documentation Style

 Tutorials

Tutorials

Getting started with Open vSwitch (OVS) and Open Virtual Network (OVN) for Open
vSwitch.

	Open vSwitch Advanced Features
	Getting Started

	Using GDB

	Motivation

	Scenario

	Setup

	Implementing Table 0: Admission control

	Testing Table 0

	Implementing Table 1: VLAN Input Processing

	Testing Table 1

	Implementing Table 2: MAC+VLAN Learning for Ingress Port

	Testing Table 2

	Implementing Table 3: Look Up Destination Port

	Testing Table 3

	Implementing Table 4: Output Processing

	Testing Table 4

	OVN Sandbox
	Getting Started

	Using GDB

	Creating OVN Resources

	Using ovn-trace

	OVN OpenStack Tutorial
	Setting Up DevStack

	DevStack preliminaries

	Shortening UUIDs

	Overview

	Switching

	Routing

	Adding a Gateway

	IPv6

	ACLs

	DHCP

	Further Directions

 Open vSwitch Advanced Features

Open vSwitch Advanced Features

Many tutorials cover the basics of OpenFlow. This is not such a tutorial.
Rather, a knowledge of the basics of OpenFlow is a prerequisite. If you do not
already understand how an OpenFlow flow table works, please go read a basic
tutorial and then continue reading here afterward.

It is also important to understand the basics of Open vSwitch before you begin.
If you have never used ovs-vsctl or ovs-ofctl before, you should learn a little
about them before proceeding.

Most of the features covered in this tutorial are Open vSwitch extensions to
OpenFlow. Also, most of the features in this tutorial are specific to the
software Open vSwitch implementation. If you are using an Open vSwitch port to
an ASIC-based hardware switch, this tutorial will not help you.

This tutorial does not cover every aspect of the features that it mentions.
You can find the details elsewhere in the Open vSwitch documentation,
especially ovs-ofctl(8) and the comments in the
include/openflow/nicira-ext.h and include/openvswitch/meta-flow.h
header files.

Getting Started

This is a hands-on tutorial. To get the most out of it, you will need Open
vSwitch binaries. You do not, on the other hand, need any physical networking
hardware or even supervisor privilege on your system. Instead, we will use a
script called ovs-sandbox, which accompanies the tutorial, that constructs
a software simulated network environment based on Open vSwitch.

You can use ovs-sandbox three ways:

	If you have already installed Open vSwitch on your system, then you should be
able to just run ovs-sandbox from this directory without any options.

	If you have not installed Open vSwitch (and you do not want to install it),
then you can build Open vSwitch according to the instructions in
Open vSwitch on Linux, FreeBSD and NetBSD, without installing it. Then run
./ovs-sandbox -b DIRECTORY from this directory, substituting the Open
vSwitch build directory for DIRECTORY.

	As a slight variant on the latter, you can run make sandbox from an Open
vSwitch build directory.

When you run ovs-sandbox, it does the following:

	CAUTION: Deletes any subdirectory of the current directory named
“sandbox” and any files in that directory.

	Creates a new directory “sandbox” in the current directory.

	Sets up special environment variables that ensure that Open vSwitch programs
will look inside the “sandbox” directory instead of in the Open vSwitch
installation directory.

	If you are using a built but not installed Open vSwitch, installs the Open
vSwitch manpages in a subdirectory of “sandbox” and adjusts the MANPATH
environment variable to point to this directory. This means that you can
use, for example, man ovs-vsctl to see a manpage for the ovs-vsctl
program that you built.

	Creates an empty Open vSwitch configuration database under “sandbox”.

	Starts ovsdb-server running under “sandbox”.

	Starts ovs-vswitchd running under “sandbox”, passing special options
that enable a special “dummy” mode for testing.

	Starts a nested interactive shell inside “sandbox”.

At this point, you can run all the usual Open vSwitch utilities from the nested
shell environment. You can, for example, use ovs-vsctl to create a bridge:

$ ovs-vsctl add-br br0

From Open vSwitch’s perspective, the bridge that you create this way is as real
as any other. You can, for example, connect it to an OpenFlow controller or
use ovs-ofctl to examine and modify it and its OpenFlow flow table. On the
other hand, the bridge is not visible to the operating system’s network stack,
so ip cannot see it or affect it, which means that utilities like ping
and tcpdump will not work either. (That has its good side, too: you can’t
screw up your computer’s network stack by manipulating a sandboxed OVS.)

When you’re done using OVS from the sandbox, exit the nested shell (by entering
the “exit” shell command or pressing Control+D). This will kill the daemons
that ovs-sandbox started, but it leaves the “sandbox” directory and its
contents in place.

The sandbox directory contains log files for the Open vSwitch dameons. You can
examine them while you’re running in the sandboxed environment or after you
exit.

Using GDB

GDB support is not required to go through the tutorial. It is added in case
user wants to explore the internals of OVS programs.

GDB can already be used to debug any running process, with the usual
gdb <program> <process-id> command.

ovs-sandbox also has a -g option for launching ovs-vswitchd under GDB.
This option can be handy for setting break points before ovs-vswitchd runs, or
for catching early segfaults. Similarly, a -d option can be used to run
ovsdb-server under GDB. Both options can be specified at the same time.

In addition, a -e option also launches ovs-vswitchd under GDB. However,
instead of displaying a gdb> prompt and waiting for user input,
ovs-vswitchd will start to execute immediately. -r option is the
corresponding option for running ovsdb-server under gdb with immediate
execution.

To avoid GDB mangling with the sandbox sub shell terminal, ovs-sandbox
starts a new xterm to run each GDB session. For systems that do not support X
windows, GDB support is effectively disabled.

When launching sandbox through the build tree’s make file, the -g option
can be passed via the SANDBOXFLAGS environment variable. make sandbox
SANDBOXFLAGS=-g will start the sandbox with ovs-vswitchd running under GDB in
its own xterm if X is available.

Motivation

The goal of this tutorial is to demonstrate the power of Open vSwitch flow
tables. The tutorial works through the implementation of a MAC-learning switch
with VLAN trunk and access ports. Outside of the Open vSwitch features that we
will discuss, OpenFlow provides at least two ways to implement such a switch:

	An OpenFlow controller to implement MAC learning in a “reactive” fashion.
Whenever a new MAC appears on the switch, or a MAC moves from one switch
port to another, the controller adjusts the OpenFlow flow table to match.

	The “normal” action. OpenFlow defines this action to submit a packet to
“the traditional non-OpenFlow pipeline of the switch”. That is, if a flow
uses this action, then the packets in the flow go through the switch in the
same way that they would if OpenFlow was not configured on the switch.

Each of these approaches has unfortunate pitfalls. In the first approach,
using an OpenFlow controller to implement MAC learning, has a significant cost
in terms of network bandwidth and latency. It also makes the controller more
difficult to scale to large numbers of switches, which is especially important
in environments with thousands of hypervisors (each of which contains a virtual
OpenFlow switch). MAC learning at an OpenFlow controller also behaves poorly
if the OpenFlow controller fails, slows down, or becomes unavailable due to
network problems.

The second approach, using the “normal” action, has different problems. First,
little about the “normal” action is standardized, so it behaves differently on
switches from different vendors, and the available features and how those
features are configured (usually not through OpenFlow) varies widely. Second,
“normal” does not work well with other OpenFlow actions. It is
“all-or-nothing”, with little potential to adjust its behavior slightly or to
compose it with other features.

Scenario

We will construct Open vSwitch flow tables for a VLAN-capable,
MAC-learning switch that has four ports:

	p1

	a trunk port that carries all VLANs, on OpenFlow port 1.

	p2

	an access port for VLAN 20, on OpenFlow port 2.

	p3, p4

	both access ports for VLAN 30, on OpenFlow ports 3 and 4, respectively.

Note

The ports’ names are not significant. You could call them eth1 through eth4,
or any other names you like.

 OVN Sandbox

OVN Sandbox

This tutorial shows you how to explore features using ovs-sandbox as a
simulated test environment. It’s assumed that you have an understanding of OVS
before going through this tutorial. Detail about OVN is covered in
ovn-architecture [http://openvswitch.org/support/dist-docs/ovn-architecture.7.html], but this tutorial lets you quickly see it in action.

Getting Started

For some general information about ovs-sandbox, see the “Getting Started”
section of the tutorial.

ovs-sandbox does not include OVN support by default. To enable OVN, you
must pass the --ovn flag. For example, if running it straight from the ovs
git tree you would run:

$ make sandbox SANDBOXFLAGS="--ovn"

Running the sandbox with OVN enabled does the following additional steps to the
environment:

	Creates the OVN_Northbound and OVN_Southbound databases as described in
ovn-nb(5) [http://openvswitch.org/support/dist-docs/ovn-nb.5.html] and ovn-sb(5) [http://openvswitch.org/support/dist-docs/ovn-sb.5.html].

	Creates a backup server for OVN_Southbond database. Sandbox launch
screen provides the instructions on accessing the backup database. However
access to the backup server is not required to go through the tutorial.

	Creates the hardware_vtep database as described in vtep(5) [http://openvswitch.org/support/dist-docs/vtep.5.html].

	Runs the ovn-northd(8) [http://openvswitch.org/support/dist-docs/ovn-northd.8.html], ovn-controller(8) [http://openvswitch.org/support/dist-docs/ovn-controller.8.html], and
ovn-controller-vtep(8) [http://openvswitch.org/support/dist-docs/ovn-controller-vtep.8.html] daemons.

	Makes OVN and VTEP utilities available for use in the environment, including
vtep-ctl(8) [http://openvswitch.org/support/dist-docs/vtep-ctl.8.html], ovn-nbctl(8) [http://openvswitch.org/support/dist-docs/ovn-nbctl.8.html], and ovn-sbctl(8) [http://openvswitch.org/support/dist-docs/ovn-sbctl.8.html].

Using GDB

GDB support is not required to go through the tutorial. See the “Using GDB”
section of the tutorial for more info. Additional flags exist for launching
the debugger for the OVN programs:

--gdb-ovn-northd
--gdb-ovn-controller
--gdb-ovn-controller-vtep

Creating OVN Resources

Once you have ovs-sandbox running with OVN enabled, you can start using OVN
utilities to create resources in OVN. As an example, we will create an
environment that has two logical switches connected by a logical router.

Create the first logical switch with one port:

$ ovn-nbctl ls-add sw0
$ ovn-nbctl lsp-add sw0 sw0-port1
$ ovn-nbctl lsp-set-addresses sw0-port1 "50:54:00:00:00:01 192.168.0.2"

Create the second logical switch with one port:

$ ovn-nbctl ls-add sw1
$ ovn-nbctl lsp-add sw1 sw1-port1
$ ovn-nbctl lsp-set-addresses sw1-port1 "50:54:00:00:00:03 11.0.0.2"

Create the logical router and attach both logical switches:

$ ovn-nbctl lr-add lr0
$ ovn-nbctl lrp-add lr0 lrp0 00:00:00:00:ff:01 192.168.0.1/24
$ ovn-nbctl lsp-add sw0 lrp0-attachment
$ ovn-nbctl lsp-set-type lrp0-attachment router
$ ovn-nbctl lsp-set-addresses lrp0-attachment 00:00:00:00:ff:01
$ ovn-nbctl lsp-set-options lrp0-attachment router-port=lrp0
$ ovn-nbctl lrp-add lr0 lrp1 00:00:00:00:ff:02 11.0.0.1/24
$ ovn-nbctl lsp-add sw1 lrp1-attachment
$ ovn-nbctl lsp-set-type lrp1-attachment router
$ ovn-nbctl lsp-set-addresses lrp1-attachment 00:00:00:00:ff:02
$ ovn-nbctl lsp-set-options lrp1-attachment router-port=lrp1

View a summary of OVN’s current logical configuration:

$ ovn-nbctl show
 switch 1396cf55-d176-4082-9a55-1c06cef626e4 (sw1)
 port lrp1-attachment
 addresses: ["00:00:00:00:ff:02"]
 port sw1-port1
 addresses: ["50:54:00:00:00:03 11.0.0.2"]
 switch 2c9d6d03-09fc-4e32-8da6-305f129b0d53 (sw0)
 port lrp0-attachment
 addresses: ["00:00:00:00:ff:01"]
 port sw0-port1
 addresses: ["50:54:00:00:00:01 192.168.0.2"]
 router f8377e8c-f75e-4fc8-8751-f3ea03c6dd98 (lr0)
 port lrp0
 mac: "00:00:00:00:ff:01"
 networks: ["192.168.0.1/24"]
 port lrp1
 mac: "00:00:00:00:ff:02"
 networks: ["11.0.0.1/24"]

The tutorial directory of the OVS source tree includes a script
that runs all of the commands for you:

$./ovn-setup.sh

Using ovn-trace

Once you have configured resources in OVN, try using ovn-trace to see
how OVN would process a sample packet through its logical pipeline.

For example, we can trace an IP packet from sw0-port1 to sw0-port2.
The --minimal output shows each visible action performed on the packet,
which includes:

	The logical router will decrement the IP TTL field.

	The logical router will change the source and destination
MAC addresses to reflect the next hop.

	The packet will be output to sw1-port1.

$ ovn-trace --minimal sw0 'inport == "sw0-port1" \
> && eth.src == 50:54:00:00:00:01 && ip4.src == 192.168.0.2 \
> && eth.dst == 00:00:00:00:ff:01 && ip4.dst == 11.0.0.2 \
> && ip.ttl == 64'

ip,reg14=0x1,vlan_tci=0x0000,dl_src=50:54:00:00:00:01,dl_dst=00:00:00:00:ff:01,nw_src=192.168.0.2,nw_dst=11.0.0.2,nw_proto=0,nw_tos=0,nw_ecn=0,nw_ttl=64
ip.ttl--;
eth.src = 00:00:00:00:ff:02;
eth.dst = 50:54:00:00:00:03;
output("sw1-port1");

The ovn-trace utility can also provide much more detail on how the packet
would be processed through OVN’s logical pipeline, as well as correlate that
to OpenFlow flows programmed by ovn-controller. See the ovn-trace(8) [http://openvswitch.org/support/dist-docs/ovn-trace.8.html]
man page for more detail.

 OVN OpenStack Tutorial

OVN OpenStack Tutorial

This tutorial demonstrates how OVN works in an OpenStack “DevStack”
environment. It was tested with the “master” branches of DevStack and
Open vSwitch near the beginning of May 2017. Anyone using an earlier
version is likely to encounter some differences. In particular, we
noticed some shortcomings in OVN utilities while writing the tutorial
and pushed out some improvements, so it’s best to use recent Open
vSwitch at least from that point of view.

The goal of this tutorial is to demonstrate OVN in an end-to-end way,
that is, to show how it works from the cloud management system at the
top (in this case, OpenStack and specifically its Neutron networking
subsystem), through the OVN northbound and southbound databases, to
the bottom at the OVN local controller and Open vSwitch data plane.
We hope that this demonstration makes it easier for users and
potential users to understand how OVN works and how to debug and
troubleshoot it.

In addition to new material, this tutorial incorporates content from
testing.rst in OpenStack networking-ovn, by Russell Bryant and
others. Without that example, this tutorial could not have been
written.

We provide enough details in the tutorial that you should be able to
fully follow along, by creating a DevStack VM and cloning DevStack and
so on. If you want to do this, start out from Setting Up DevStack
below.

Setting Up DevStack

This section explains how to install DevStack, a kind of OpenStack
packaging for developers, in a way that allows you to follow along
with the tutorial in full.

Unless you have a spare computer laying about, it’s easiest to install
DevStacck in a virtual machine. This tutorial was built using a VM
implemented by KVM and managed by virt-manager. I recommend
configuring the VM configured for the x86-64 architecture, 4 GB RAM, 2
VCPUs, and a 20 GB virtual disk.

Note

If you happen to run your Linux-based host with 32-bit userspace,
then you will have some special issues, even if you use a 64-bit
kernel:

	You may find that you can get 32-bit DevStack VMs to work to some
extent, but I personally got tired of finding workarounds. I
recommend running your VMs in 64-bit mode. To get this to work,
I had to go to the CPUs tab for the VM configuration in
virt-manager and change the CPU model from the one originally
listed to “Hypervisor Default’ (it is curious that this is not
the default!).

	On a host with 32-bit userspace, KVM supports VMs with at most
2047 MB RAM. This is adequate, barely, to start DevStack, but it
is not enough to run multiple (nested) VMs. To prevent
out-of-memory failures, set up extra swap space in the guest.
For example, to add 2 GB swap:

$ sudo dd if=/dev/zero of=/swapfile bs=1M count=2048
$ sudo mkswap /swapfile
$ sudo swapon /swapfile

and then add a line like this to /etc/fstab to add the new
swap automatically upon reboot:

/swapfile swap swap defaults 0 0

 Deep Dive

Deep Dive

How Open vSwitch and OVN are implemented and, where necessary, why it was
implemented that way.

OVS

	Design Decisions In Open vSwitch
	Asynchronous Messages

	OFPAT_ENQUEUE

	OFPT_FLOW_MOD

	OpenFlow 1.4 Bundles

	OFPT_PACKET_IN

	VLAN Matching

	Flow Cookies

	Multiple Table Support

	OFPTC_* Table Configuration

	IPv6

	In-Band Control

	Action Reproduction

	Suggestions

	Open vSwitch Datapath Development Guide
	Flow Key Compatibility

	Flow Key Format

	Wildcarded Flow Key Format

	Unique Flow Identifiers

	Basic Rule for Evolving Flow Keys

	Handling Malformed Packets

	Other Rules

	Coding Rules

	Integration Guide for Centralized Control
	Open_vSwitch table

	Bridge table

	Interface table

	HA for OVN DB servers using pacemaker

	Porting Open vSwitch to New Software or Hardware
	Vocabulary

	Open vSwitch Architectural Overview

	Writing a netdev Provider

	Porting Strategies

	ofproto Providers

	Writing a dpif Provider

	Miscellaneous Notes

	Why OVS Does Not Support Hybrid Providers

	Questions

	OpenFlow Support in Open vSwitch
	The Plan

	OpenFlow 1.1

	OpenFlow 1.2

	OpenFlow 1.3

	OpenFlow 1.4 & ONF Extensions for 1.3.X Pack1

	OpenFlow 1.4 only

	OpenFlow 1.5 & ONF Extensions for 1.3.X Pack2

	OpenFlow 1.5 only

	General

	How to contribute

	Bonding
	Enabling and Disabling Slaves

	Bond Packet Input

	Bond Packet Output

	Bond Balance Modes

	OVSDB Replication Implementation
	Terminology

	Design

	Setting Up The Replication

	Replication Process

	Runtime Management Commands

	The DPDK Datapath
	DPDK vHost User Ports

	DPDK Ring Ports

	OVS-on-Hyper-V Design
	Background Info

	Design

	Kernel Module (Datapath)

	Kernel-Userspace Interface

	Flow of a Packet

	Build/Deployment

	References

	Language Bindings
	Official Bindings

	Third-Party Bindings

	Testing
	Built-in Tooling

	Continuous Integration with Travis CI

	vsperf

	Tracing packets inside Open vSwitch
	Packet Tracing

	Credits

	C IDL Compound Indexes
	Introduction

	Typical Use Cases

	Implementation Design

	C IDL API

	Index Usage

OVN

	OVN Gateway High Availability Plan
	Basic Architecture

	L3HA

	L2HA

	ovn-architecture(7)

	(pdf) [http://openvswitch.org/support/dist-docs/ovn-architecture.7.pdf]

	(html) [http://openvswitch.org/support/dist-docs/ovn-architecture.7.html]

	(plain text) [http://openvswitch.org/support/dist-docs/ovn-architecture.7.txt]

 Design Decisions In Open vSwitch

Design Decisions In Open vSwitch

This document describes design decisions that went into implementing Open
vSwitch. While we believe these to be reasonable decisions, it is impossible
to predict how Open vSwitch will be used in all environments. Understanding
assumptions made by Open vSwitch is critical to a successful deployment. The
end of this document contains contact information that can be used to let us
know how we can make Open vSwitch more generally useful.

Asynchronous Messages

Over time, Open vSwitch has added many knobs that control whether a given
controller receives OpenFlow asynchronous messages. This section describes how
all of these features interact.

First, a service controller never receives any asynchronous messages unless it
changes its miss_send_len from the service controller default of zero in one of
the following ways:

	Sending an OFPT_SET_CONFIG message with nonzero miss_send_len.

	Sending any NXT_SET_ASYNC_CONFIG message: as a side effect, this message
changes the miss_send_len to OFP_DEFAULT_MISS_SEND_LEN (128) for
service controllers.

Second, OFPT_FLOW_REMOVED and NXT_FLOW_REMOVED messages are generated
only if the flow that was removed had the OFPFF_SEND_FLOW_REM flag set.

Third, OFPT_PACKET_IN and NXT_PACKET_IN messages are sent only to
OpenFlow controller connections that have the correct connection ID (see
struct nx_controller_id and struct nx_action_controller):

	For packet-in messages generated by a NXAST_CONTROLLER action, the
controller ID specified in the action.

	For other packet-in messages, controller ID zero. (This is the default ID
when an OpenFlow controller does not configure one.)

Finally, Open vSwitch consults a per-connection table indexed by the message
type, reason code, and current role. The following table shows how this table
is initialized by default when an OpenFlow connection is made. An entry
labeled yes means that the message is sent, an entry labeled --- means
that the message is suppressed.

OFPT_PACKET_IN / NXT_PACKET_IN

	message and reason code

	other

	slave

	OFPR_NO_MATCH

	yes

	—

	OFPR_ACTION

	yes

	—

	OFPR_INVALID_TTL

	—

	—

	OFPR_ACTION_SET (OF1.4+)

	yes

	—

	OFPR_GROUP (OF1.4+)

	yes

	—

	OFPR_PACKET_OUT (OF1.4+)

	yes

	—

OFPT_FLOW_REMOVED / NXT_FLOW_REMOVED

	message and reason code

	other

	slave

	OFPRR_IDLE_TIMEOUT

	yes

	—

	OFPRR_HARD_TIMEOUT

	yes

	—

	OFPRR_DELETE

	yes

	—

	OFPRR_GROUP_DELETE (OF1.3+)

	yes

	—

	OFPRR_METER_DELETE (OF1.4+)

	yes

	—

	OFPRR_EVICTION (OF1.4+)

	yes

	—

OFPT_PORT_STATUS

	message and reason code

	other

	slave

	OFPPR_ADD

	yes

	yes

	OFPPR_DELETE

	yes

	yes

	OFPPR_MODIFY

	yes

	yes

OFPT_ROLE_REQUEST / OFPT_ROLE_REPLY (OF1.4+)

	message and reason code

	other

	slave

	OFPCRR_MASTER_REQUEST

	—

	—

	OFPCRR_CONFIG

	—

	—

	OFPCRR_EXPERIMENTER

	—

	—

OFPT_TABLE_STATUS (OF1.4+)

	message and reason code

	other

	slave

	OFPTR_VACANCY_DOWN

	—

	—

	OFPTR_VACANCY_UP

	—

	—

OFPT_REQUESTFORWARD (OF1.4+)

	message and reason code

	other

	slave

	OFPRFR_GROUP_MOD

	—

	—

	OFPRFR_METER_MOD

	—

	—

The NXT_SET_ASYNC_CONFIG message directly sets all of the values in this
table for the current connection. The OFPC_INVALID_TTL_TO_CONTROLLER bit
in the OFPT_SET_CONFIG message controls the setting for
OFPR_INVALID_TTL for the “master” role.

OFPAT_ENQUEUE

The OpenFlow 1.0 specification requires the output port of the
OFPAT_ENQUEUE action to “refer to a valid physical port (i.e. <
OFPP_MAX) or OFPP_IN_PORT”. Although OFPP_LOCAL is not less than
OFPP_MAX, it is an ‘internal’ port which can have QoS applied to it in
Linux. Since we allow the OFPAT_ENQUEUE to apply to ‘internal’ ports whose
port numbers are less than OFPP_MAX, we interpret OFPP_LOCAL as a
physical port and support OFPAT_ENQUEUE on it as well.

OFPT_FLOW_MOD

The OpenFlow specification for the behavior of OFPT_FLOW_MOD is confusing.
The following tables summarize the Open vSwitch implementation of its behavior
in the following categories:

	“match on priority”

	Whether the flow_mod acts only on flows whose priority matches that
included in the flow_mod message.

	“match on out_port”

	Whether the flow_mod acts only on flows that output to the out_port
included in the flow_mod message (if out_port is not OFPP_NONE).
OpenFlow 1.1 and later have a similar feature (not listed separately here)
for out_group.

	“match on flow_cookie”:

	Whether the flow_mod acts only on flows whose flow_cookie matches an
optional controller-specified value and mask.

	“updates flow_cookie”:

	Whether the flow_mod changes the flow_cookie of the flow or flows
that it matches to the flow_cookie included in the flow_mod message.

	“updates OFPFF_ flags”:

	Whether the flow_mod changes the OFPFF_SEND_FLOW_REM flag of the flow or
flows that it matches to the setting included in the flags of the flow_mod
message.

	“honors OFPFF_CHECK_OVERLAP”:

	Whether the OFPFF_CHECK_OVERLAP flag in the flow_mod is significant.

	“updates idle_timeout” and “updates hard_timeout”:

	Whether the idle_timeout and hard_timeout in the flow_mod,
respectively, have an effect on the flow or flows matched by the
flow_mod.

	“updates idle timer”:

	Whether the flow_mod resets the per-flow timer that measures how long a
flow has been idle.

	“updates hard timer”:

	Whether the flow_mod resets the per-flow timer that measures how long it
has been since a flow was modified.

	“zeros counters”:

	Whether the flow_mod resets per-flow packet and byte counters to zero.

	“may add a new flow”:

	Whether the flow_mod may add a new flow to the flow table. (Obviously
this is always true for “add” commands but in some OpenFlow versions “modify”
and “modify-strict” can also add new flows.)

	“sends flow_removed message”:

	Whether the flow_mod generates a flow_removed message for the flow or flows
that it affects.

An entry labeled yes means that the flow mod type does have the indicated
behavior, --- means that it does not, an empty cell means that the property
is not applicable, and other values are explained below the table.

OpenFlow 1.0

	RULE

	ADD

	MODIFY

	STRICT

	DELETE

	STRICT

	match on priority

	yes

	—

	yes

	—

	yes

	match on out_port

	—

	—

	—

	yes

	yes

	match on flow_cookie

	—

	—

	—

	—

	—

	match on table_id

	—

	—

	—

	—

	—

	controller chooses table_id

	—

	—

	—

	
	

	updates flow_cookie

	yes

	yes

	yes

	
	

	updates OFPFF_SEND_FLOW_REM

	yes

	
	

	
	

	
	

	honors OFPFF_CHECK_OVERLAP

	yes

	
	

	
	

	
	

	updates idle_timeout

	yes

	
	

	
	

	
	

	updates hard_timeout

	yes

	
	

	
	

	
	

	resets idle timer

	yes

	
	

	
	

	
	

	resets hard timer

	yes

	yes

	yes

	
	

	zeros counters

	yes

	
	

	
	

	
	

	may add a new flow

	yes

	yes

	yes

	
	

	sends flow_removed message

	—

	—

	—

	%

	%

where:

	+

	“modify” and “modify-strict” only take these actions when they create a new
flow, not when they update an existing flow.

	%

	“delete” and “delete_strict” generates a flow_removed message if the deleted
flow or flows have the OFPFF_SEND_FLOW_REM flag set. (Each controller
can separately control whether it wants to receive the generated messages.)

OpenFlow 1.1

OpenFlow 1.1 makes these changes:

	The controller now must specify the table_id of the flow match searched
and into which a flow may be inserted. Behavior for a table_id of 255 is
undefined.

	A flow_mod, except an “add”, can now match on the flow_cookie.

	When a flow_mod matches on the flow_cookie, “modify” and
“modify-strict” never insert a new flow.

	RULE

	ADD

	MODIFY

	STRICT

	DELETE

	STRICT

	match on priority

	yes

	—

	yes

	—

	yes

	match on out_port

	—

	—

	—

	yes

	yes

	match on flow_cookie

	—

	yes

	yes

	yes

	yes

	match on table_id

	yes

	yes

	yes

	yes

	yes

	controller chooses table_id

	yes

	yes

	yes

	
	

	updates flow_cookie

	yes

	—

	—

	
	

	updates OFPFF_SEND_FLOW_REM

	yes

	
	

	
	

	
	

	honors OFPFF_CHECK_OVERLAP

	yes

	
	

	
	

	
	

	updates idle_timeout

	yes

	
	

	
	

	
	

	updates hard_timeout

	yes

	
	

	
	

	
	

	resets idle timer

	yes

	
	

	
	

	
	

	resets hard timer

	yes

	yes

	yes

	
	

	zeros counters

	yes

	
	

	
	

	
	

	may add a new flow

	yes

	#

	#

	
	

	sends flow_removed message

	—

	—

	—

	%

	%

where:

	+

	“modify” and “modify-strict” only take these actions when they create a new
flow, not when they update an existing flow.

	%

	“delete” and “delete_strict” generates a flow_removed message if the deleted
flow or flows have the OFPFF_SEND_FLOW_REM flag set. (Each controller
can separately control whether it wants to receive the generated messages.)

	#

	“modify” and “modify-strict” only add a new flow if the flow_mod does not
match on any bits of the flow cookie

OpenFlow 1.2

OpenFlow 1.2 makes these changes:

	Only “add” commands ever add flows, “modify” and “modify-strict” never do.

	A new flag OFPFF_RESET_COUNTS now controls whether “modify” and
“modify-strict” reset counters, whereas previously they never reset counters
(except when they inserted a new flow).

	RULE

	ADD

	MODIFY

	STRICT

	DELETE

	STRICT

	match on priority

	yes

	—

	yes

	—

	yes

	match on out_port

	—

	—

	—

	yes

	yes

	match on flow_cookie

	—

	yes

	yes

	yes

	yes

	match on table_id

	yes

	yes

	yes

	yes

	yes

	controller chooses table_id

	yes

	yes

	yes

	
	

	updates flow_cookie

	yes

	—

	—

	
	

	updates OFPFF_SEND_FLOW_REM

	yes

	—

	—

	
	

	honors OFPFF_CHECK_OVERLAP

	yes

	—

	—

	
	

	updates idle_timeout

	yes

	—

	—

	
	

	updates hard_timeout

	yes

	—

	—

	
	

	resets idle timer

	yes

	—

	—

	
	

	resets hard timer

	yes

	yes

	yes

	
	

	zeros counters

	yes

	&

	&

	
	

	may add a new flow

	yes

	—

	—

	
	

	sends flow_removed message

	—

	—

	—

	%

	%

	%

	“delete” and “delete_strict” generates a flow_removed message if the deleted
flow or flows have the OFPFF_SEND_FLOW_REM flag set. (Each controller
can separately control whether it wants to receive the generated messages.)

	&

	“modify” and “modify-strict” reset counters if the OFPFF_RESET_COUNTS
flag is specified.

OpenFlow 1.3

OpenFlow 1.3 makes these changes:

	Behavior for a table_id of 255 is now defined, for “delete” and
“delete-strict” commands, as meaning to delete from all tables. A table_id
of 255 is now explicitly invalid for other commands.

	New flags OFPFF_NO_PKT_COUNTS and OFPFF_NO_BYT_COUNTS for “add”
operations.

The table for 1.3 is the same as the one shown above for 1.2.

OpenFlow 1.4

OpenFlow 1.4 makes these changes:

	Adds the “importance” field to flow_mods, but it does not explicitly
specify which kinds of flow_mods set the importance. For consistency,
Open vSwitch uses the same rule for importance as for idle_timeout and
hard_timeout, that is, only an “ADD” flow_mod sets the importance. (This
issue has been filed with the ONF as EXT-496.)

	Eviction Mechanism to automatically delete entries of lower importance to
make space for newer entries.

OpenFlow 1.4 Bundles

Open vSwitch makes all flow table modifications atomically, i.e., any datapath
packet only sees flow table configurations either before or after any change
made by any flow_mod. For example, if a controller removes all flows with
a single OpenFlow flow_mod, no packet sees an intermediate version of the
OpenFlow pipeline where only some of the flows have been deleted.

It should be noted that Open vSwitch caches datapath flows, and that the cached
flows are NOT flushed immediately when a flow table changes. Instead, the
datapath flows are revalidated against the new flow table as soon as possible,
and usually within one second of the modification. This design amortizes the
cost of datapath cache flushing across multiple flow table changes, and has a
significant performance effect during simultaneous heavy flow table churn and
high traffic load. This means that different cached datapath flows may have
been computed based on a different flow table configurations, but each of the
datapath flows is guaranteed to have been computed over a coherent view of the
flow tables, as described above.

With OpenFlow 1.4 bundles this atomicity can be extended across an arbitrary
set of flow_mod. Bundles are supported for flow_mod and port_mod
messages only. For flow_mod, both atomic and ordered bundle flags
are trivially supported, as all bundled messages are executed in the order they
were added and all flow table modifications are now atomic to the datapath.
Port mods may not appear in atomic bundles, as port status modifications are
not atomic.

To support bundles, ovs-ofctl has a --bundle option that makes the
flow mod commands (add-flow, add-flows, mod-flows, del-flows,
and replace-flows) use an OpenFlow 1.4 bundle to operate the
modifications as a single atomic transaction. If any of the flow mods
in a transaction fail, none of them are executed. All flow mods in a
bundle appear to datapath lookups simultaneously.

Furthermore, ovs-ofctl add-flow and add-flows commands now accept
arbitrary flow mods as an input by allowing the flow specification to
start with an explicit add, modify, modify_strict, delete, or
delete_strict keyword. A missing keyword is treated as add, so
this is fully backwards compatible. With the new --bundle option
all the flow mods are executed as a single atomic transaction using an
OpenFlow 1.4 bundle. Without the --bundle option the flow mods are
executed in order up to the first failing flow_mod, and in case of an
error the earlier successful flow_mod calls are not rolled back.

OFPT_PACKET_IN

The OpenFlow 1.1 specification for OFPT_PACKET_IN is confusing. The
definition in OF1.1 openflow.h is[*]:

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
 struct ofp_header header;
 uint32_t buffer_id; /* ID assigned by datapath. */
 uint32_t in_port; /* Port on which frame was received. */
 uint32_t in_phy_port; /* Physical Port on which frame was received. */
 uint16_t total_len; /* Full length of frame. */
 uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */
 uint8_t table_id; /* ID of the table that was looked up */
 uint8_t data[0]; /* Ethernet frame, halfway through 32-bit word,
 so the IP header is 32-bit aligned. The
 amount of data is inferred from the length
 field in the header. Because of padding,
 offsetof(struct ofp_packet_in, data) ==
 sizeof(struct ofp_packet_in) - 2. */
};
OFP_ASSERT(sizeof(struct ofp_packet_in) == 24);

The confusing part is the comment on the data[] member. This comment is a
leftover from OF1.0 openflow.h, in which the comment was correct:
sizeof(struct ofp_packet_in) is 20 in OF1.0 and ffsetof(struct
ofp_packet_in, data) is 18. When OF1.1 was written, the structure members
were changed but the comment was carelessly not updated, and the comment became
wrong: sizeof(struct ofp_packet_in) and offsetof(struct ofp_packet_in,
data) are both 24 in OF1.1.

That leaves the question of how to implement ofp_packet_in in OF1.1. The
OpenFlow reference implementation for OF1.1 does not include any padding, that
is, the first byte of the encapsulated frame immediately follows the
table_id member without a gap. Open vSwitch therefore implements it the
same way for compatibility.

For an earlier discussion, please see the thread archived at:
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-August/002604.html

[*] The quoted definition is directly from OF1.1. Definitions used inside OVS
omit the 8-byte ofp_header members, so the sizes in this discussion are
8 bytes larger than those declared in OVS header files.

VLAN Matching

The 802.1Q VLAN header causes more trouble than any other 4 bytes in
networking. More specifically, three versions of OpenFlow and Open vSwitch
have among them four different ways to match the contents and presence of the
VLAN header. The following table describes how each version works.

	Match

	NXM

	OF1.0

	OF1.1

	OF1.2

	[1]

	0000/0000

	????/1,??/?

	????/1,??/?

	0000/0000,--

	[2]

	0000/ffff

	ffff/0,??/?

	ffff/0,??/?

	0000/ffff,--

	[3]

	1xxx/1fff

	0xxx/0,??/1

	0xxx/0,??/1

	1xxx/ffff,--

	[4]

	z000/f000

	????/1,0y/0

	fffe/0,0y/0

	1000/1000,0y

	[5]

	zxxx/ffff

	0xxx/0,0y/0

	0xxx/0,0y/0

	1xxx/ffff,0y

	[6]

	0000/0fff

	<none>

	<none>

	<none>

	[7]

	0000/f000

	<none>

	<none>

	<none>

	[8]

	0000/efff

	<none>

	<none>

	<none>

	[9]

	1001/1001

	<none>

	<none>

	1001/1001,--

	[10]

	3000/3000

	<none>

	<none>

	<none>

	[11]

	1000/1000

	<none>

	fffe/0,??/1

	1000/1000,--

where:

	Match:

	See the list below.

	NXM:

	xxxx/yyyy means NXM_OF_VLAN_TCI_W with value xxxx and mask
yyyy. A mask of 0000 is equivalent to omitting
NXM_OF_VLAN_TCI(_W), a mask of ffff is equivalent to
NXM_OF_VLAN_TCI.

	OF1.0, OF1.1:

	wwww/x,yy/z means dl_vlan wwww, OFPFW_DL_VLAN x,
dl_vlan_pcp yy, and OFPFW_DL_VLAN_PCP z. If
OFPFW_DL_VLAN or OFPFW_DL_VLAN_PCP is 1, the corresponding field
value is wildcarded, otherwise it is matched. ? means that the given
bits are ignored (their conventional values are 0000/x,00/0 in OF1.0,
0000/x,00/1 in OF1.1; x is never ignored). <none> means that the
given match is not supported.

	OF1.2:

	xxxx/yyyy,zz means OXM_OF_VLAN_VID_W with value xxxx and mask
yyyy, and OXM_OF_VLAN_PCP (which is not maskable) with value zz.
A mask of 0000 is equivalent to omitting OXM_OF_VLAN_VID(_W), a mask
of ffff is equivalent to OXM_OF_VLAN_VID. -- means that
OXM_OF_VLAN_PCP is omitted. <none> means that the given match is not
supported.

The matches are:

	[1]:

	Matches any packet, that is, one without an 802.1Q header or with an 802.1Q
header with any TCI value.

	[2]

	Matches only packets without an 802.1Q header.

	NXM:

	Any match with vlan_tci == 0 and (vlan_tci_mask & 0x1000) != 0 is
equivalent to the one listed in the table.

	OF1.0:

	The spec doesn’t define behavior if dl_vlan is set to 0xffff and
OFPFW_DL_VLAN_PCP is not set.

	OF1.1:

	The spec says explicitly to ignore dl_vlan_pcp when dl_vlan is set
to 0xffff.

	OF1.2:

	The spec doesn’t say what should happen if vlan_vid == 0 and
(vlan_vid_mask & 0x1000) != 0 but vlan_vid_mask != 0x1000, but it
would be straightforward to also interpret as [2].

	[3]

	Matches only packets that have an 802.1Q header with VID xxx (and any
PCP).

	[4]

	Matches only packets that have an 802.1Q header with PCP y (and any VID).

	NXM:

	z is (y << 1) | 1.

	OF1.0:

	The spec isn’t very clear, but OVS implements it this way.

	OF1.2:

	Presumably other masks such that (vlan_vid_mask & 0x1fff) == 0x1000
would also work, but the spec doesn’t define their behavior.

	[5]

	Matches only packets that have an 802.1Q header with VID xxx and PCP
y.

	NXM:

	z is ((y << 1) | 1).

	OF1.2:

	Presumably other masks such that (vlan_vid_mask & 0x1fff) == 0x1fff
would also work.

	[6]

	Matches packets with no 802.1Q header or with an 802.1Q header with a VID of
0. Only possible with NXM.

	[7]

	Matches packets with no 802.1Q header or with an 802.1Q header with a PCP of
0. Only possible with NXM.

	[8]

	Matches packets with no 802.1Q header or with an 802.1Q header with both VID
and PCP of 0. Only possible with NXM.

	[9]

	Matches only packets that have an 802.1Q header with an odd-numbered VID (and
any PCP). Only possible with NXM and OF1.2. (This is just an example; one
can match on any desired VID bit pattern.)

	[10]

	Matches only packets that have an 802.1Q header with an odd-numbered PCP (and
any VID). Only possible with NXM. (This is just an example; one can match
on any desired VID bit pattern.)

	[11]

	Matches any packet with an 802.1Q header, regardless of VID or PCP.

Additional notes:

	OF1.2:

	The top three bits of OXM_OF_VLAN_VID are fixed to zero, so bits 13, 14,
and 15 in the masks listed in the table may be set to arbitrary values, as
long as the corresponding value bits are also zero. The suggested ffff
mask for [2], [3], and [5] allows a shorter OXM representation (the mask is
omitted) than the minimal 1fff mask.

Flow Cookies

OpenFlow 1.0 and later versions have the concept of a “flow cookie”, which is a
64-bit integer value attached to each flow. The treatment of the flow cookie
has varied greatly across OpenFlow versions, however.

In OpenFlow 1.0:

	OFPFC_ADD set the cookie in the flow that it added.

	OFPFC_MODIFY and OFPFC_MODIFY_STRICT updated the cookie for the flow
or flows that it modified.

	OFPST_FLOW messages included the flow cookie.

	OFPT_FLOW_REMOVED messages reported the cookie of the flow that was
removed.

OpenFlow 1.1 made the following changes:

	Flow mod operations OFPFC_MODIFY, OFPFC_MODIFY_STRICT,
OFPFC_DELETE, and OFPFC_DELETE_STRICT, plus flow stats requests and
aggregate stats requests, gained the ability to match on flow cookies with an
arbitrary mask.

	OFPFC_MODIFY and OFPFC_MODIFY_STRICT were changed to add a new flow,
in the case of no match, only if the flow table modification operation did
not match on the cookie field. (In OpenFlow 1.0, modify operations always
added a new flow when there was no match.)

	OFPFC_MODIFY and OFPFC_MODIFY_STRICT no longer updated flow cookies.

OpenFlow 1.2 made the following changes:

	OFPC_MODIFY and OFPFC_MODIFY_STRICT were changed to never add a new
flow, regardless of whether the flow cookie was used for matching.

Open vSwitch support for OpenFlow 1.0 implements the OpenFlow 1.0 behavior with
the following extensions:

	An NXM extension field NXM_NX_COOKIE(_W) allows the NXM versions of
OFPFC_MODIFY, OFPFC_MODIFY_STRICT, OFPFC_DELETE, and
OFPFC_DELETE_STRICT flow_mod calls, plus flow stats requests and
aggregate stats requests, to match on flow cookies with arbitrary masks.
This is much like the equivalent OpenFlow 1.1 feature.

	Like OpenFlow 1.1, OFPC_MODIFY and OFPFC_MODIFY_STRICT add a new flow
if there is no match and the mask is zero (or not given).

	The cookie field in OFPT_FLOW_MOD and NXT_FLOW_MOD messages is
used as the cookie value for OFPFC_ADD commands, as described in OpenFlow
1.0. For OFPFC_MODIFY and OFPFC_MODIFY_STRICT commands, the
cookie field is used as a new cookie for flows that match unless it is
UINT64_MAX, in which case the flow’s cookie is not updated.

	NXT_PACKET_IN (the Nicira extended version of OFPT_PACKET_IN) reports
the cookie of the rule that generated the packet, or all-1-bits if no rule
generated the packet. (Older versions of OVS used all-0-bits instead of
all-1-bits.)

The following table shows the handling of different protocols when receiving
OFPFC_MODIFY and OFPFC_MODIFY_STRICT messages. A mask of 0 indicates
either an explicit mask of zero or an implicit one by not specifying the
NXM_NX_COOKIE(_W) field.

	
	
	
	
	

	OpenFlow 1.0

	no

	yes

	(add on miss)

	(add on miss)

	OpenFlow 1.1

	yes

	no

	no

	yes

	OpenFlow 1.2

	yes

	no

	no

	no

	NXM

	yes

	yes*

	no

	yes

* Updates the flow’s cookie unless the cookie field is UINT64_MAX.

Multiple Table Support

OpenFlow 1.0 has only rudimentary support for multiple flow tables. Notably,
OpenFlow 1.0 does not allow the controller to specify the flow table to which a
flow is to be added. Open vSwitch adds an extension for this purpose, which is
enabled on a per-OpenFlow connection basis using the NXT_FLOW_MOD_TABLE_ID
message. When the extension is enabled, the upper 8 bits of the command
member in an OFPT_FLOW_MOD or NXT_FLOW_MOD message designates the table
to which a flow is to be added.

The Open vSwitch software switch implementation offers 255 flow tables. On
packet ingress, only the first flow table (table 0) is searched, and the
contents of the remaining tables are not considered in any way. Tables other
than table 0 only come into play when an NXAST_RESUBMIT_TABLE action
specifies another table to search.

Tables 128 and above are reserved for use by the switch itself. Controllers
should use only tables 0 through 127.

OFPTC_* Table Configuration

This section covers the history of the OFPTC_* table configuration bits
across OpenFlow versions.

OpenFlow 1.0 flow tables had fixed configurations.

OpenFlow 1.1 enabled controllers to configure behavior upon flow table miss and
added the OFPTC_MISS_* constants for that purpose. OFPTC_* did not
control anything else but it was nevertheless conceptualized as a set of
bit-fields instead of an enum. OF1.1 added the OFPT_TABLE_MOD message to
set OFPTC_MISS_* for a flow table and added the config field to the
OFPST_TABLE reply to report the current setting.

OpenFlow 1.2 did not change anything in this regard.

OpenFlow 1.3 switched to another means to changing flow table miss behavior and
deprecated OFPTC_MISS_* without adding any more OFPTC_* constants.
This meant that OFPT_TABLE_MOD now had no purpose at all, but OF1.3 kept it
around “for backward compatibility with older and newer versions of the
specification.” At the same time, OF1.3 introduced a new message
OFPMP_TABLE_FEATURES that included a field config documented as reporting
the OFPTC_* values set with OFPT_TABLE_MOD; of course this served no
real purpose because no OFPTC_* values are defined. OF1.3 did remove the
OFPTC_* field from OFPMP_TABLE (previously named OFPST_TABLE).

OpenFlow 1.4 defined two new OFPTC_* constants, OFPTC_EVICTION and
OFPTC_VACANCY_EVENTS, using bits that did not overlap with OFPTC_MISS_*
even though those bits had not been defined since OF1.2. OFPT_TABLE_MOD
still controlled these settings. The field for OFPTC_* values in
OFPMP_TABLE_FEATURES was renamed from config to capabilities and
documented as reporting the flags that are supported in a OFPT_TABLE_MOD
message. The OFPMP_TABLE_DESC message newly added in OF1.4 reported the
OFPTC_* setting.

OpenFlow 1.5 did not change anything in this regard.

Revisions

	OpenFlow

	OFPTC_* flags

	TABLE_MOD

	Statistics

	TABLE_FEATURES

	TABLE_DESC

	OF1.0

	none

	no (*)(+)

	no (*)

	nothing (*)(+)

	no (*)(+)

	OF1.1/1.2

	MISS_*

	yes

	yes

	nothing (+)

	no (+)

	OF1.3

	none

	yes (*)

	no (*)

	config (*)

	no (*)(+)

	OF1.4/1.5

	EVICTION/VACANCY_EVENTS

	yes

	no

	capabilities

	yes

where:

	OpenFlow:

	The OpenFlow version(s).

	OFPTC_* flags:

	The OFPTC_* flags defined in those versions.

	TABLE_MOD:

	Whether OFPT_TABLE_MOD can modify OFPTC_* flags.

	Statistics:

	Whether OFPST_TABLE/OFPMP_TABLE reports the OFPTC_* flags.

	TABLE_FEATURES:

	What OFPMP_TABLE_FEATURES reports (if it exists): either the current
configuration or the switch’s capabilities.

	TABLE_DESC:

	Whether OFPMP_TABLE_DESC reports the current configuration.

(*): Nothing to report/change anyway.

(+): No such message.

IPv6

Open vSwitch supports stateless handling of IPv6 packets. Flows can be written
to support matching TCP, UDP, and ICMPv6 headers within an IPv6 packet. Deeper
matching of some Neighbor Discovery messages is also supported.

IPv6 was not designed to interact well with middle-boxes. This, combined with
Open vSwitch’s stateless nature, have affected the processing of IPv6 traffic,
which is detailed below.

Extension Headers

The base IPv6 header is incredibly simple with the intention of only containing
information relevant for routing packets between two endpoints. IPv6 relies
heavily on the use of extension headers to provide any other functionality.
Unfortunately, the extension headers were designed in such a way that it is
impossible to move to the next header (including the layer-4 payload) unless
the current header is understood.

Open vSwitch will process the following extension headers and continue to the
next header:

	Fragment (see the next section)

	AH (Authentication Header)

	Hop-by-Hop Options

	Routing

	Destination Options

When a header is encountered that is not in that list, it is considered
“terminal”. A terminal header’s IPv6 protocol value is stored in nw_proto
for matching purposes. If a terminal header is TCP, UDP, or ICMPv6, the packet
will be further processed in an attempt to extract layer-4 information.

Fragments

IPv6 requires that every link in the internet have an MTU of 1280 octets or
greater (RFC 2460). As such, a terminal header (as described above in
“Extension Headers”) in the first fragment should generally be reachable. In
this case, the terminal header’s IPv6 protocol type is stored in the
nw_proto field for matching purposes. If a terminal header cannot be found
in the first fragment (one with a fragment offset of zero), the nw_proto
field is set to 0. Subsequent fragments (those with a non-zero fragment
offset) have the nw_proto field set to the IPv6 protocol type for fragments
(44).

Jumbograms

An IPv6 jumbogram (RFC 2675) is a packet containing a payload longer than
65,535 octets. A jumbogram is only relevant in subnets with a link MTU greater
than 65,575 octets, and are not required to be supported on nodes that do not
connect to link with such large MTUs. Currently, Open vSwitch doesn’t process
jumbograms.

In-Band Control

Motivation

An OpenFlow switch must establish and maintain a TCP network connection to its
controller. There are two basic ways to categorize the network that this
connection traverses: either it is completely separate from the one that the
switch is otherwise controlling, or its path may overlap the network that the
switch controls. We call the former case “out-of-band control”, the latter
case “in-band control”.

Out-of-band control has the following benefits:

	Simplicity: Out-of-band control slightly simplifies the switch
implementation.

	Reliability: Excessive switch traffic volume cannot interfere with control
traffic.

	Integrity: Machines not on the control network cannot impersonate a switch or
a controller.

	Confidentiality: Machines not on the control network cannot snoop on control
traffic.

In-band control, on the other hand, has the following advantages:

	No dedicated port: There is no need to dedicate a physical switch port to
control, which is important on switches that have few ports (e.g. wireless
routers, low-end embedded platforms).

	No dedicated network: There is no need to build and maintain a separate
control network. This is important in many environments because it reduces
proliferation of switches and wiring.

Open vSwitch supports both out-of-band and in-band control. This section
describes the principles behind in-band control. See the description of the
Controller table in ovs-vswitchd.conf.db(5) to configure OVS for in-band
control.

Principles

The fundamental principle of in-band control is that an OpenFlow switch must
recognize and switch control traffic without involving the OpenFlow controller.
All the details of implementing in-band control are special cases of this
principle.

The rationale for this principle is simple. If the switch does not handle
in-band control traffic itself, then it will be caught in a contradiction: it
must contact the controller, but it cannot, because only the controller can set
up the flows that are needed to contact the controller.

The following points describe important special cases of this principle.

	In-band control must be implemented regardless of whether the switch is
connected.

It is tempting to implement the in-band control rules only when the switch is
not connected to the controller, using the reasoning that the controller
should have complete control once it has established a connection with the
switch.

This does not work in practice. Consider the case where the switch is
connected to the controller. Occasionally it can happen that the controller
forgets or otherwise needs to obtain the MAC address of the switch. To do
so, the controller sends a broadcast ARP request. A switch that implements
the in-band control rules only when it is disconnected will then send an
OFPT_PACKET_IN message up to the controller. The controller will be
unable to respond, because it does not know the MAC address of the switch.
This is a deadlock situation that can only be resolved by the switch noticing
that its connection to the controller has hung and reconnecting.

	In-band control must override flows set up by the controller.

It is reasonable to assume that flows set up by the OpenFlow controller
should take precedence over in-band control, on the basis that the controller
should be in charge of the switch.

Again, this does not work in practice. Reasonable controller implementations
may set up a “last resort” fallback rule that wildcards every field and,
e.g., sends it up to the controller or discards it. If a controller does
that, then it will isolate itself from the switch.

	The switch must recognize all control traffic.

The fundamental principle of in-band control states, in part, that a switch
must recognize control traffic without involving the OpenFlow controller.
More specifically, the switch must recognize all control traffic. “False
negatives”, that is, packets that constitute control traffic but that the
switch does not recognize as control traffic, lead to control traffic storms.

Consider an OpenFlow switch that only recognizes control packets sent to or
from that switch. Now suppose that two switches of this type, named A and B,
are connected to ports on an Ethernet hub (not a switch) and that an OpenFlow
controller is connected to a third hub port. In this setup, control traffic
sent by switch A will be seen by switch B, which will send it to the
controller as part of an OFPT_PACKET_IN message. Switch A will then see the
OFPT_PACKET_IN message’s packet, re-encapsulate it in another OFPT_PACKET_IN,
and send it to the controller. Switch B will then see that OFPT_PACKET_IN,
and so on in an infinite loop.

Incidentally, the consequences of “false positives”, where packets that are
not control traffic are nevertheless recognized as control traffic, are much
less severe. The controller will not be able to control their behavior, but
the network will remain in working order. False positives do constitute a
security problem.

	The switch should use echo-requests to detect disconnection.

TCP will notice that a connection has hung, but this can take a considerable
amount of time. For example, with default settings the Linux kernel TCP
implementation will retransmit for between 13 and 30 minutes, depending on
the connection’s retransmission timeout, according to kernel documentation.
This is far too long for a switch to be disconnected, so an OpenFlow switch
should implement its own connection timeout. OpenFlow OFPT_ECHO_REQUEST
messages are the best way to do this, since they test the OpenFlow connection
itself.

Implementation

This section describes how Open vSwitch implements in-band control. Correctly
implementing in-band control has proven difficult due to its many subtleties,
and has thus gone through many iterations. Please read through and understand
the reasoning behind the chosen rules before making modifications.

Open vSwitch implements in-band control as “hidden” flows, that is, flows that
are not visible through OpenFlow, and at a higher priority than wildcarded
flows can be set up through OpenFlow. This is done so that the OpenFlow
controller cannot interfere with them and possibly break connectivity with its
switches. It is possible to see all flows, including in-band ones, with the
ovs-appctl “bridge/dump-flows” command.

The Open vSwitch implementation of in-band control can hide traffic to
arbitrary “remotes”, where each remote is one TCP port on one IP address.
Currently the remotes are automatically configured as the in-band OpenFlow
controllers plus the OVSDB managers, if any. (The latter is a requirement
because OVSDB managers are responsible for configuring OpenFlow controllers, so
if the manager cannot be reached then OpenFlow cannot be reconfigured.)

The following rules (with the OFPP_NORMAL action) are set up on any bridge that
has any remotes:

	DHCP requests sent from the local port.

	ARP replies to the local port’s MAC address.

	ARP requests from the local port’s MAC address.

In-band also sets up the following rules for each unique next-hop MAC address
for the remotes’ IPs (the “next hop” is either the remote itself, if it is on a
local subnet, or the gateway to reach the remote):

	ARP replies to the next hop’s MAC address.

	ARP requests from the next hop’s MAC address.

In-band also sets up the following rules for each unique remote IP address:

	ARP replies containing the remote’s IP address as a target.

	ARP requests containing the remote’s IP address as a source.

In-band also sets up the following rules for each unique remote (IP,port) pair:

	TCP traffic to the remote’s IP and port.

	TCP traffic from the remote’s IP and port.

The goal of these rules is to be as narrow as possible to allow a switch to
join a network and be able to communicate with the remotes. As mentioned
earlier, these rules have higher priority than the controller’s rules, so if
they are too broad, they may prevent the controller from implementing its
policy. As such, in-band actively monitors some aspects of flow and packet
processing so that the rules can be made more precise.

In-band control monitors attempts to add flows into the datapath that could
interfere with its duties. The datapath only allows exact match entries, so
in-band control is able to be very precise about the flows it prevents. Flows
that miss in the datapath are sent to userspace to be processed, so preventing
these flows from being cached in the “fast path” does not affect correctness.
The only type of flow that is currently prevented is one that would prevent
DHCP replies from being seen by the local port. For example, a rule that
forwarded all DHCP traffic to the controller would not be allowed, but one that
forwarded to all ports (including the local port) would.

As mentioned earlier, packets that miss in the datapath are sent to the
userspace for processing. The userspace has its own flow table, the
“classifier”, so in-band checks whether any special processing is needed before
the classifier is consulted. If a packet is a DHCP response to a request from
the local port, the packet is forwarded to the local port, regardless of the
flow table. Note that this requires L7 processing of DHCP replies to determine
whether the ‘chaddr’ field matches the MAC address of the local port.

It is interesting to note that for an L3-based in-band control mechanism, the
majority of rules are devoted to ARP traffic. At first glance, some of these
rules appear redundant. However, each serves an important role. First, in
order to determine the MAC address of the remote side (controller or gateway)
for other ARP rules, we must allow ARP traffic for our local port with rules
(b) and (c). If we are between a switch and its connection to the remote, we
have to allow the other switch’s ARP traffic to through. This is done with
rules (d) and (e), since we do not know the addresses of the other switches a
priori, but do know the remote’s or gateway’s. Finally, if the remote is
running in a local guest VM that is not reached through the local port, the
switch that is connected to the VM must allow ARP traffic based on the remote’s
IP address, since it will not know the MAC address of the local port that is
sending the traffic or the MAC address of the remote in the guest VM.

With a few notable exceptions below, in-band should work in most network
setups. The following are considered “supported” in the current
implementation:

	Locally Connected. The switch and remote are on the same subnet. This uses
rules (a), (b), (c), (h), and (i).

	Reached through Gateway. The switch and remote are on different subnets and
must go through a gateway. This uses rules (a), (b), (c), (h), and (i).

	Between Switch and Remote. This switch is between another switch and the
remote, and we want to allow the other switch’s traffic through. This uses
rules (d), (e), (h), and (i). It uses (b) and (c) indirectly in order to
know the MAC address for rules (d) and (e). Note that DHCP for the other
switch will not work unless an OpenFlow controller explicitly lets this
switch pass the traffic.

	Between Switch and Gateway. This switch is between another switch and the
gateway, and we want to allow the other switch’s traffic through. This uses
the same rules and logic as the “Between Switch and Remote” configuration
described earlier.

	Remote on Local VM. The remote is a guest VM on the system running in-band
control. This uses rules (a), (b), (c), (h), and (i).

	Remote on Local VM with Different Networks. The remote is a guest VM on the
system running in-band control, but the local port is not used to connect to
the remote. For example, an IP address is configured on eth0 of the switch.
The remote’s VM is connected through eth1 of the switch, but an IP address
has not been configured for that port on the switch. As such, the switch
will use eth0 to connect to the remote, and eth1’s rules about the local port
will not work. In the example, the switch attached to eth0 would use rules
(a), (b), (c), (h), and (i) on eth0. The switch attached to eth1 would use
rules (f), (g), (h), and (i).

The following are explicitly not supported by in-band control:

	Specify Remote by Name. Currently, the remote must be identified by IP
address. A naive approach would be to permit all DNS traffic.
Unfortunately, this would prevent the controller from defining any policy
over DNS. Since switches that are located behind us need to connect to the
remote, in-band cannot simply add a rule that allows DNS traffic from the
local port. The “correct” way to support this is to parse DNS requests to
allow all traffic related to a request for the remote’s name through. Due to
the potential security problems and amount of processing, we decided to hold
off for the time-being.

	Differing Remotes for Switches. All switches must know the L3 addresses for
all the remotes that other switches may use, since rules need to be set up to
allow traffic related to those remotes through. See rules (f), (g), (h), and
(i).

	Differing Routes for Switches. In order for the switch to allow other
switches to connect to a remote through a gateway, it allows the gateway’s
traffic through with rules (d) and (e). If the routes to the remote differ
for the two switches, we will not know the MAC address of the alternate
gateway.

Action Reproduction

It seems likely that many controllers, at least at startup, use the OpenFlow
“flow statistics” request to obtain existing flows, then compare the flows’
actions against the actions that they expect to find. Before version 1.8.0,
Open vSwitch always returned exact, byte-for-byte copies of the actions that
had been added to the flow table. The current version of Open vSwitch does not
always do this in some exceptional cases. This section lists the exceptions
that controller authors must keep in mind if they compare actual actions
against desired actions in a bytewise fashion:

	Open vSwitch zeros padding bytes in action structures, regardless of their
values when the flows were added.

	Open vSwitch “normalizes” the instructions in OpenFlow 1.1 (and later) in the
following way:

	OVS sorts the instructions into the following order: Apply-Actions,
Clear-Actions, Write-Actions, Write-Metadata, Goto-Table.

	OVS drops Apply-Actions instructions that have empty action lists.

	OVS drops Write-Actions instructions that have empty action sets.

Please report other discrepancies, if you notice any, so that we can fix or
document them.

Suggestions

Suggestions to improve Open vSwitch are welcome at discuss@openvswitch.org.

 Open vSwitch Datapath Development Guide

Open vSwitch Datapath Development Guide

The Open vSwitch kernel module allows flexible userspace control over
flow-level packet processing on selected network devices. It can be used to
implement a plain Ethernet switch, network device bonding, VLAN processing,
network access control, flow-based network control, and so on.

The kernel module implements multiple “datapaths” (analogous to bridges), each
of which can have multiple “vports” (analogous to ports within a bridge). Each
datapath also has associated with it a “flow table” that userspace populates
with “flows” that map from keys based on packet headers and metadata to sets of
actions. The most common action forwards the packet to another vport; other
actions are also implemented.

When a packet arrives on a vport, the kernel module processes it by extracting
its flow key and looking it up in the flow table. If there is a matching flow,
it executes the associated actions. If there is no match, it queues the packet
to userspace for processing (as part of its processing, userspace will likely
set up a flow to handle further packets of the same type entirely in-kernel).

Flow Key Compatibility

Network protocols evolve over time. New protocols become important and
existing protocols lose their prominence. For the Open vSwitch kernel module
to remain relevant, it must be possible for newer versions to parse additional
protocols as part of the flow key. It might even be desirable, someday, to
drop support for parsing protocols that have become obsolete. Therefore, the
Netlink interface to Open vSwitch is designed to allow carefully written
userspace applications to work with any version of the flow key, past or
future.

To support this forward and backward compatibility, whenever the kernel module
passes a packet to userspace, it also passes along the flow key that it parsed
from the packet. Userspace then extracts its own notion of a flow key from the
packet and compares it against the kernel-provided version:

	If userspace’s notion of the flow key for the packet matches the kernel’s,
then nothing special is necessary.

	If the kernel’s flow key includes more fields than the userspace version of
the flow key, for example if the kernel decoded IPv6 headers but userspace
stopped at the Ethernet type (because it does not understand IPv6), then
again nothing special is necessary. Userspace can still set up a flow in the
usual way, as long as it uses the kernel-provided flow key to do it.

	If the userspace flow key includes more fields than the kernel’s, for example
if userspace decoded an IPv6 header but the kernel stopped at the Ethernet
type, then userspace can forward the packet manually, without setting up a
flow in the kernel. This case is bad for performance because every packet
that the kernel considers part of the flow must go to userspace, but the
forwarding behavior is correct. (If userspace can determine that the values
of the extra fields would not affect forwarding behavior, then it could set
up a flow anyway.)

How flow keys evolve over time is important to making this work, so
the following sections go into detail.

Flow Key Format

A flow key is passed over a Netlink socket as a sequence of Netlink attributes.
Some attributes represent packet metadata, defined as any information about a
packet that cannot be extracted from the packet itself, e.g. the vport on which
the packet was received. Most attributes, however, are extracted from headers
within the packet, e.g. source and destination addresses from Ethernet, IP, or
TCP headers.

The <linux/openvswitch.h> header file defines the exact format of the flow
key attributes. For informal explanatory purposes here, we write them as
comma-separated strings, with parentheses indicating arguments and nesting.
For example, the following could represent a flow key corresponding to a TCP
packet that arrived on vport 1:

in_port(1), eth(src=e0:91:f5:21:d0:b2, dst=00:02:e3:0f:80:a4),
eth_type(0x0800), ipv4(src=172.16.0.20, dst=172.18.0.52, proto=17, tos=0,
frag=no), tcp(src=49163, dst=80)

Often we ellipsize arguments not important to the discussion, e.g.:

in_port(1), eth(...), eth_type(0x0800), ipv4(...), tcp(...)

Wildcarded Flow Key Format

A wildcarded flow is described with two sequences of Netlink attributes passed
over the Netlink socket. A flow key, exactly as described above, and an
optional corresponding flow mask.

A wildcarded flow can represent a group of exact match flows. Each 1 bit
in the mask specifies an exact match with the corresponding bit in the flow key.
A 0 bit specifies a don’t care bit, which will match either a 1 or
0 bit of an incoming packet. Using a wildcarded flow can improve the flow
set up rate by reducing the number of new flows that need to be processed by
the user space program.

Support for the mask Netlink attribute is optional for both the kernel and user
space program. The kernel can ignore the mask attribute, installing an exact
match flow, or reduce the number of don’t care bits in the kernel to less than
what was specified by the user space program. In this case, variations in bits
that the kernel does not implement will simply result in additional flow
setups. The kernel module will also work with user space programs that neither
support nor supply flow mask attributes.

Since the kernel may ignore or modify wildcard bits, it can be difficult for
the userspace program to know exactly what matches are installed. There are two
possible approaches: reactively install flows as they miss the kernel flow
table (and therefore not attempt to determine wildcard changes at all) or use
the kernel’s response messages to determine the installed wildcards.

When interacting with userspace, the kernel should maintain the match portion
of the key exactly as originally installed. This will provides a handle to
identify the flow for all future operations. However, when reporting the mask
of an installed flow, the mask should include any restrictions imposed by the
kernel.

The behavior when using overlapping wildcarded flows is undefined. It is the
responsibility of the user space program to ensure that any incoming packet can
match at most one flow, wildcarded or not. The current implementation performs
best-effort detection of overlapping wildcarded flows and may reject some but
not all of them. However, this behavior may change in future versions.

Unique Flow Identifiers

An alternative to using the original match portion of a key as the handle for
flow identification is a unique flow identifier, or “UFID”. UFIDs are optional
for both the kernel and user space program.

User space programs that support UFID are expected to provide it during flow
setup in addition to the flow, then refer to the flow using the UFID for all
future operations. The kernel is not required to index flows by the original
flow key if a UFID is specified.

Basic Rule for Evolving Flow Keys

Some care is needed to really maintain forward and backward compatibility for
applications that follow the rules listed under “Flow key compatibility” above.

The basic rule is obvious:

New network protocol support must only supplement existing flow key
attributes. It must not change the meaning of already defined flow key
attributes.

This rule does have less-obvious consequences so it is worth working through a
few examples. Suppose, for example, that the kernel module did not already
implement VLAN parsing. Instead, it just interpreted the 802.1Q TPID
(0x8100) as the Ethertype then stopped parsing the packet. The flow key
for any packet with an 802.1Q header would look essentially like this, ignoring
metadata:

eth(...), eth_type(0x8100)

Naively, to add VLAN support, it makes sense to add a new “vlan” flow key
attribute to contain the VLAN tag, then continue to decode the encapsulated
headers beyond the VLAN tag using the existing field definitions. With this
change, a TCP packet in VLAN 10 would have a flow key much like this:

eth(...), vlan(vid=10, pcp=0), eth_type(0x0800), ip(proto=6, ...), tcp(...)

But this change would negatively affect a userspace application that has not
been updated to understand the new “vlan” flow key attribute. The application
could, following the flow compatibility rules above, ignore the “vlan”
attribute that it does not understand and therefore assume that the flow
contained IP packets. This is a bad assumption (the flow only contains IP
packets if one parses and skips over the 802.1Q header) and it could cause the
application’s behavior to change across kernel versions even though it follows
the compatibility rules.

The solution is to use a set of nested attributes. This is, for example, why
802.1Q support uses nested attributes. A TCP packet in VLAN 10 is actually
expressed as:

eth(...), eth_type(0x8100), vlan(vid=10, pcp=0), encap(eth_type(0x0800),
ip(proto=6, ...), tcp(...)))

Notice how the eth_type, ip, and tcp flow key attributes are nested
inside the encap attribute. Thus, an application that does not understand
the vlan key will not see either of those attributes and therefore will not
misinterpret them. (Also, the outer eth_type is still 0x8100, not
changed to 0x0800)

Handling Malformed Packets

Don’t drop packets in the kernel for malformed protocol headers, bad checksums,
etc. This would prevent userspace from implementing a simple Ethernet switch
that forwards every packet.

Instead, in such a case, include an attribute with “empty” content. It doesn’t
matter if the empty content could be valid protocol values, as long as those
values are rarely seen in practice, because userspace can always forward all
packets with those values to userspace and handle them individually.

For example, consider a packet that contains an IP header that indicates
protocol 6 for TCP, but which is truncated just after the IP header, so that
the TCP header is missing. The flow key for this packet would include a tcp
attribute with all-zero src and dst, like this:

eth(...), eth_type(0x0800), ip(proto=6, ...), tcp(src=0, dst=0)

As another example, consider a packet with an Ethernet type of 0x8100,
indicating that a VLAN TCI should follow, but which is truncated just after the
Ethernet type. The flow key for this packet would include an all-zero-bits
vlan and an empty encap attribute, like this:

eth(...), eth_type(0x8100), vlan(0), encap()

Unlike a TCP packet with source and destination ports 0, an all-zero-bits VLAN
TCI is not that rare, so the CFI bit (aka VLAN_TAG_PRESENT inside the kernel)
is ordinarily set in a vlan attribute expressly to allow this situation to be
distinguished. Thus, the flow key in this second example unambiguously
indicates a missing or malformed VLAN TCI.

Other Rules

The other rules for flow keys are much less subtle:

	Duplicate attributes are not allowed at a given nesting level.

	Ordering of attributes is not significant.

	When the kernel sends a given flow key to userspace, it always composes it
the same way. This allows userspace to hash and compare entire flow keys
that it may not be able to fully interpret.

Coding Rules

Implement the headers and codes for compatibility with older kernel in
linux/compat/ directory. All public functions should be exported using
EXPORT_SYMBOL macro. Public function replacing the same-named kernel
function should be prefixed with rpl_. Otherwise, the function should be
prefixed with ovs_. For special case when it is not possible to follow
this rule (e.g., the pskb_expand_head() function), the function name must
be added to linux/compat/build-aux/export-check-whitelist, otherwise, the
compilation check check-export-symbol will fail.

 Integration Guide for Centralized Control

Integration Guide for Centralized Control

This document describes how to integrate Open vSwitch onto a new platform to
expose the state of the switch and attached devices for centralized control.
(If you are looking to port the switching components of Open vSwitch to a new
platform, refer to Porting Open vSwitch to New Software or Hardware) The focus of this guide is on hypervisors,
but many of the interfaces are useful for hardware switches, as well. The
XenServer integration is the most mature implementation, so most of the
examples are drawn from it.

The externally visible interface to this integration is platform-agnostic. We
encourage anyone who integrates Open vSwitch to use the same interface, because
keeping a uniform interface means that controllers require less customization
for individual platforms (and perhaps no customization at all).

Integration centers around the Open vSwitch database and mostly involves the
external_ids columns in several of the tables. These columns are not
interpreted by Open vSwitch itself. Instead, they provide information to a
controller that permits it to associate a database record with a more
meaningful entity. In contrast, the other_config column is used to
configure behavior of the switch. The main job of the integrator, then, is to
ensure that these values are correctly populated and maintained.

An integrator sets the columns in the database by talking to the ovsdb-server
daemon. A few of the columns can be set during startup by calling the ovs-ctl
tool from inside the startup scripts. The xenserver/etc_init.d_openvswitch
script provides examples of its use, and the ovs-ctl(8) manpage contains
complete documentation. At runtime, ovs-vsctl can be be used to set columns in
the database. The script xenserver/etc_xensource_scripts_vif contains
examples of its use, and ovs-vsctl(8) manpage contains complete documentation.

Python and C bindings to the database are provided if deeper integration with a
program are needed. The XenServer ovs-xapi-sync daemon
(xenserver/usr_share_openvswitch_scripts_ovs-xapi-sync) provides an example
of using the Python bindings. More information on the python bindings is
available at python/ovs/db/idl.py. Information on the C bindings is
available at lib/ovsdb-idl.h.

The following diagram shows how integration scripts fit into the Open vSwitch
architecture:

Diagram

 +--+
 | Controller Cluster +
 +--+
 |
 |
+--+
| | |
| +--------------+---------------+ |
| | | |
| +-------------------+ +------------------+ |
| | ovsdb-server |-----------| ovs-vswitchd | |
| +-------------------+ +------------------+ |
+---------------------+			
	Integration scripts		
	(ex: ovs-xapi-sync)		
+---------------------+			
| | Userspace |
|--|
| | Kernel |
| | |
| +---------------------+ |
| | OVS Kernel Module | |
| +---------------------+ |
+--+

A description of the most relevant fields for integration follows. By setting
these values, controllers are able to understand the network and manage it more
dynamically and precisely. For more details about the database and each
individual column, please refer to the ovs-vswitchd.conf.db(5) manpage.

Open_vSwitch table

The Open_vSwitch table describes the switch as a whole. The
system_type and system_version columns identify the platform to the
controller. The external_ids:system-id key uniquely identifies the
physical host. In XenServer, the system-id will likely be the same as the UUID
returned by xe host-list. This key allows controllers to distinguish
between multiple hypervisors.

Most of this configuration can be done with the ovs-ctl command at startup.
For example:

$ ovs-ctl --system-type="XenServer" --system-version="6.0.0-50762p" \
 --system-id="${UUID}" "${other_options}" start

Alternatively, the ovs-vsctl command may be used to set a particular value at
runtime. For example:

$ ovs-vsctl set open_vswitch . external-ids:system-id='"${UUID}"'

The other_config:enable-statistics key may be set to true to have OVS
populate the database with statistics (e.g., number of CPUs, memory, system
load) for the controller’s use.

Bridge table

The Bridge table describes individual bridges within an Open vSwitch instance.
The external-ids:bridge-id key uniquely identifies a particular bridge. In
XenServer, this will likely be the same as the UUID returned by xe
network-list for that particular bridge.

For example, to set the identifier for bridge “br0”, the following command can
be used:

$ ovs-vsctl set Bridge br0 external-ids:bridge-id='"${UUID}"'

The MAC address of the bridge may be manually configured by setting it with the
other_config:hwaddr key. For example:

$ ovs-vsctl set Bridge br0 other_config:hwaddr="12:34:56:78:90:ab"

Interface table

The Interface table describes an interface under the control of Open vSwitch.
The external_ids column contains keys that are used to provide additional
information about the interface:

attached-mac

This field contains the MAC address of the device attached to the interface.
On a hypervisor, this is the MAC address of the interface as seen inside a
VM. It does not necessarily correlate to the host-side MAC address. For
example, on XenServer, the MAC address on a VIF in the hypervisor is always
FE:FF:FF:FF:FF:FF, but inside the VM a normal MAC address is seen.

iface-id

This field uniquely identifies the interface. In hypervisors, this allows
the controller to follow VM network interfaces as VMs migrate. A well-chosen
identifier should also allow an administrator or a controller to associate
the interface with the corresponding object in the VM management system. For
example, the Open vSwitch integration with XenServer by default uses the
XenServer assigned UUID for a VIF record as the iface-id.

iface-status

In a hypervisor, there are situations where there are multiple interface
choices for a single virtual ethernet interface inside a VM. Valid values
are “active” and “inactive”. A complete description is available in the
ovs-vswitchd.conf.db(5) manpage.

vm-id

This field uniquely identifies the VM to which this interface belongs. A
single VM may have multiple interfaces attached to it.

As in the previous tables, the ovs-vsctl command may be used to configure the
values. For example, to set the iface-id on eth0, the following command
can be used:

$ ovs-vsctl set Interface eth0 external-ids:iface-id='"${UUID}"'

HA for OVN DB servers using pacemaker

The ovsdb servers can work in either active or backup mode. In backup mode, db
server will be connected to an active server and replicate the active servers
contents. At all times, the data can be transacted only from the active server.
When the active server dies for some reason, entire OVN operations will be
stalled.

Pacemaker [http://clusterlabs.org/pacemaker.html] is a cluster resource
manager which can manage a defined set of resource across a set of clustered
nodes. Pacemaker manages the resource with the help of the resource agents.
One among the resource agent is OCF [http://www.linux-ha.org/wiki/OCF_Resource_Agents]

OCF is nothing but a shell script which accepts a set of actions and returns an
appropriate status code.

With the help of the OCF resource agent ovn/utilities/ovndb-servers.ocf, one
can defined a resource for the pacemaker such that pacemaker will always
maintain one running active server at any time.

After creating a pacemaker cluster, use the following commands to create one
active and multiple backup servers for OVN databases:

$ pcs resource create ovndb_servers ocf:ovn:ovndb-servers \
 master_ip=x.x.x.x \
 ovn_ctl=<path of the ovn-ctl script> \
 op monitor interval="10s" \
 op monitor role=Master interval="15s"
$ pcs resource master ovndb_servers-master ovndb_servers \
 meta notify="true"

The master_ip and ovn_ctl are the parameters that will be used by the OCF
script. ovn_ctl is optional, if not given, it assumes a default value of
/usr/share/openvswitch/scripts/ovn-ctl. master_ip is the IP address on which
the active database server is expected to be listening, the slave node uses it
to connect to the master node. You can add the optional parameters
‘nb_master_port’, ‘nb_master_protocol’, ‘sb_master_port’, ‘sb_master_protocol’
to set the protocol and port.

Whenever the active server dies, pacemaker is responsible to promote one of the
backup servers to be active. Both ovn-controller and ovn-northd needs the
ip-address at which the active server is listening. With pacemaker changing the
node at which the active server is run, it is not efficient to instruct all the
ovn-controllers and the ovn-northd to listen to the latest active server’s
ip-address.

This problem can be solved by using a native ocf resource agent
ocf:heartbeat:IPaddr2. The IPAddr2 resource agent is just a resource with
an ip-address. When we colocate this resource with the active server, pacemaker
will enable the active server to be connected with a single ip-address all the
time. This is the ip-address that needs to be given as the parameter while
creating the ovndb_servers resource.

Use the following command to create the IPAddr2 resource and colocate it
with the active server:

$ pcs resource create VirtualIP ocf:heartbeat:IPaddr2 ip=x.x.x.x \
 op monitor interval=30s
$ pcs constraint order promote ovndb_servers-master then VirtualIP
$ pcs constraint colocation add VirtualIP with master ovndb_servers-master \
 score=INFINITY

 Porting Open vSwitch to New Software or Hardware

Porting Open vSwitch to New Software or Hardware

Open vSwitch (OVS) is intended to be easily ported to new software and hardware
platforms. This document describes the types of changes that are most likely
to be necessary in porting OVS to Unix-like platforms. (Porting OVS to other
kinds of platforms is likely to be more difficult.)

Vocabulary

For historical reasons, different words are used for essentially the same
concept in different areas of the Open vSwitch source tree. Here is a
concordance, indexed by the area of the source tree:

datapath/ vport ---
vswitchd/ iface port
ofproto/ port bundle
ofproto/bond.c slave bond
lib/lacp.c slave lacp
lib/netdev.c netdev ---
database Interface Port

Open vSwitch Architectural Overview

The following diagram shows the very high-level architecture of Open vSwitch
from a porter’s perspective.

+-------------------+
| ovs-vswitchd |<-->ovsdb-server
+-------------------+
| ofproto |<-->OpenFlow controllers
+--------+-+--------+
| netdev | | ofproto|
+--------+ |provider|
| netdev | +--------+
|provider|
+--------+

Some of the components are generic. Modulo bugs or inadequacies, these
components should not need to be modified as part of a port:

	ovs-vswitchd

	The main Open vSwitch userspace program, in vswitchd/. It reads the desired
Open vSwitch configuration from the ovsdb-server program over an IPC channel
and passes this configuration down to the “ofproto” library. It also passes
certain status and statistical information from ofproto back into the
database.

	ofproto

	The Open vSwitch library, in ofproto/, that implements an OpenFlow switch.
It talks to OpenFlow controllers over the network and to switch hardware or
software through an “ofproto provider”, explained further below.

	netdev

	The Open vSwitch library, in lib/netdev.c, that abstracts interacting with
network devices, that is, Ethernet interfaces. The netdev library is a thin
layer over “netdev provider” code, explained further below.

The other components may need attention during a port. You will almost
certainly have to implement a “netdev provider”. Depending on the type of port
you are doing and the desired performance, you may also have to implement an
“ofproto provider” or a lower-level component called a “dpif” provider.

The following sections talk about these components in more detail.

Writing a netdev Provider

A “netdev provider” implements an operating system and hardware specific
interface to “network devices”, e.g. eth0 on Linux. Open vSwitch must be able
to open each port on a switch as a netdev, so you will need to implement a
“netdev provider” that works with your switch hardware and software.

struct netdev_class, in lib/netdev-provider.h, defines the interfaces
required to implement a netdev. That structure contains many function
pointers, each of which has a comment that is meant to describe its behavior in
detail. If the requirements are unclear, report this as a bug.

The netdev interface can be divided into a few rough categories:

	Functions required to properly implement OpenFlow features. For example,
OpenFlow requires the ability to report the Ethernet hardware address of a
port. These functions must be implemented for minimally correct operation.

	Functions required to implement optional Open vSwitch features. For example,
the Open vSwitch support for in-band control requires netdev support for
inspecting the TCP/IP stack’s ARP table. These functions must be implemented
if the corresponding OVS features are to work, but may be omitted initially.

	Functions needed in some implementations but not in others. For example,
most kinds of ports (see below) do not need functionality to receive packets
from a network device.

The existing netdev implementations may serve as useful examples during a port:

	lib/netdev-linux.c implements netdev functionality for Linux network devices,
using Linux kernel calls. It may be a good place to start for full-featured
netdev implementations.

	lib/netdev-vport.c provides support for “virtual ports” implemented by the
Open vSwitch datapath module for the Linux kernel. This may serve as a model
for minimal netdev implementations.

	lib/netdev-dummy.c is a fake netdev implementation useful only for testing.

Porting Strategies

After a netdev provider has been implemented for a system’s network devices,
you may choose among three basic porting strategies.

The lowest-effort strategy is to use the “userspace switch” implementation
built into Open vSwitch. This ought to work, without writing any more code, as
long as the netdev provider that you implemented supports receiving packets.
It yields poor performance, however, because every packet passes through the
ovs-vswitchd process. Refer to Open vSwitch without Kernel Support for instructions
on how to configure a userspace switch.

If the userspace switch is not the right choice for your port, then you will
have to write more code. You may implement either an “ofproto provider” or a
“dpif provider”. Which you should choose depends on a few different factors:

	Only an ofproto provider can take full advantage of hardware with built-in
support for wildcards (e.g. an ACL table or a TCAM).

	A dpif provider can take advantage of the Open vSwitch built-in
implementations of bonding, LACP, 802.1ag, 802.1Q VLANs, and other features.
An ofproto provider has to provide its own implementations, if the hardware
can support them at all.

	A dpif provider is usually easier to implement, but most appropriate for
software switching. It “explodes” wildcard rules into exact-match entries
(with an optional wildcard mask). This allows fast hash lookups in software,
but makes inefficient use of TCAMs in hardware that support wildcarding.

The following sections describe how to implement each kind of port.

ofproto Providers

An “ofproto provider” is what ofproto uses to directly monitor and control an
OpenFlow-capable switch. struct ofproto_class, in
ofproto/ofproto-provider.h, defines the interfaces to implement an ofproto
provider for new hardware or software. That structure contains many function
pointers, each of which has a comment that is meant to describe its behavior in
detail. If the requirements are unclear, report this as a bug.

The ofproto provider interface is preliminary. Let us know if it seems
unsuitable for your purpose. We will try to improve it.

Writing a dpif Provider

Open vSwitch has a built-in ofproto provider named “ofproto-dpif”, which is
built on top of a library for manipulating datapaths, called “dpif”. A
“datapath” is a simple flow table, one that is only required to support
exact-match flows, that is, flows without wildcards. When a packet arrives on
a network device, the datapath looks for it in this table. If there is a
match, then it performs the associated actions. If there is no match, the
datapath passes the packet up to ofproto-dpif, which maintains the full
OpenFlow flow table. If the packet matches in this flow table, then
ofproto-dpif executes its actions and inserts a new entry into the dpif flow
table. (Otherwise, ofproto-dpif passes the packet up to ofproto to send the
packet to the OpenFlow controller, if one is configured.)

When calculating the dpif flow, ofproto-dpif generates an exact-match flow that
describes the missed packet. It makes an effort to figure out what fields can
be wildcarded based on the switch’s configuration and OpenFlow flow table. The
dpif is free to ignore the suggested wildcards and only support the exact-match
entry. However, if the dpif supports wildcarding, then it can use the masks to
match multiple flows with fewer entries and potentially significantly reduce
the number of flow misses handled by ofproto-dpif.

The “dpif” library in turn delegates much of its functionality to a “dpif
provider”. The following diagram shows how dpif providers fit into the Open
vSwitch architecture:

Architecure

 _
 | +-------------------+
 | | ovs-vswitchd |<-->ovsdb-server
 | +-------------------+
 | | ofproto |<-->OpenFlow controllers
 | +--------+-+--------+ _
 | | netdev | |ofproto-| |
userspace | +--------+ | dpif | |
 | | netdev | +--------+ | | |
 | |provider| | dpif | |
 | +---||---+ +--------+ |
 | || | dpif | | implementation of
 | || |provider| | ofproto provider
 |_ || +---||---+ |
 || || |
 _ +---||-----+---||---+ |
 | | |datapath| |
 kernel | | +--------+ _|
 | | |
 |_ +--------||---------+
 ||
 physical
 NIC

struct dpif_class, in lib/dpif-provider.h, defines the interfaces
required to implement a dpif provider for new hardware or software. That
structure contains many function pointers, each of which has a comment that is
meant to describe its behavior in detail. If the requirements are unclear,
report this as a bug.

There are two existing dpif implementations that may serve as useful examples
during a port:

	lib/dpif-netlink.c is a Linux-specific dpif implementation that talks to an
Open vSwitch-specific kernel module (whose sources are in the “datapath”
directory). The kernel module performs all of the switching work, passing
packets that do not match any flow table entry up to userspace. This dpif
implementation is essentially a wrapper around calls into the kernel module.

	lib/dpif-netdev.c is a generic dpif implementation that performs all
switching internally. This is how the Open vSwitch userspace switch is
implemented.

Miscellaneous Notes

Open vSwitch source code uses uint16_t, uint32_t, and uint64_t as
fixed-width types in host byte order, and ovs_be16, ovs_be32, and
ovs_be64 as fixed-width types in network byte order. Each of the latter is
equivalent to the one of the former, but the difference in name makes the
intended use obvious.

The default “fail-mode” for Open vSwitch bridges is “standalone”, meaning that,
when the OpenFlow controllers cannot be contacted, Open vSwitch acts as a
regular MAC-learning switch. This works well in virtualization environments
where there is normally just one uplink (either a single physical interface or
a bond). In a more general environment, it can create loops. So, if you are
porting to a general-purpose switch platform, you should consider changing the
default “fail-mode” to “secure”, which does not behave this way. See
documentation for the “fail-mode” column in the Bridge table in
ovs-vswitchd.conf.db(5) for more information.

lib/entropy.c assumes that it can obtain high-quality random number seeds
at startup by reading from /dev/urandom. You will need to modify it if this is
not true on your platform.

vswitchd/system-stats.c only knows how to obtain some statistics on Linux.
Optionally you may implement them for your platform as well.

Why OVS Does Not Support Hybrid Providers

The porting strategies section above describes the “ofproto provider” and
“dpif provider” porting strategies. Only an ofproto provider can take
advantage of hardware TCAM support, and only a dpif provider can take advantage
of the OVS built-in implementations of various features. It is therefore
tempting to suggest a hybrid approach that shares the advantages of both
strategies.

However, Open vSwitch does not support a hybrid approach. Doing so may be
possible, with a significant amount of extra development work, but it does not
yet seem worthwhile, for the reasons explained below.

First, user surprise is likely when a switch supports a feature only with a
high performance penalty. For example, one user questioned why adding a
particular OpenFlow action to a flow caused a 1,058x slowdown on a hardware
OpenFlow implementation [1]. The action required the flow to be implemented in
software.

Given that implementing a flow in software on the slow management CPU of a
hardware switch causes a major slowdown, software-implemented flows would only
make sense for very low-volume traffic. But many of the features built into
the OVS software switch implementation would need to apply to every flow to be
useful. There is no value, for example, in applying bonding or 802.1Q VLAN
support only to low-volume traffic.

Besides supporting features of OpenFlow actions, a hybrid approach could also
support forms of matching not supported by particular switching hardware, by
sending all packets that might match a rule to software. But again this can
cause an unacceptable slowdown by forcing bulk traffic through software in the
hardware switch’s slow management CPU. Consider, for example, a hardware
switch that can match on the IPv6 Ethernet type but not on fields in IPv6
headers. An OpenFlow table that matched on the IPv6 Ethernet type would
perform well, but adding a rule that matched only UDPv6 would force every IPv6
packet to software, slowing down not just UDPv6 but all IPv6 processing.

[1]
Aaron Rosen, “Modify packet fields extremely slow”,
openflow-discuss mailing list, June 26, 2011, archived at
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-June/002386.html.

Questions

Direct porting questions to dev@openvswitch.org. We will try to use questions
to improve this porting guide.

 OpenFlow Support in Open vSwitch

OpenFlow Support in Open vSwitch

Open vSwitch support for OpenFlow 1.1 and beyond is a work in progress. This
file describes the work still to be done.

The Plan

OpenFlow version support is not a build-time option. A single build of Open
vSwitch must be able to handle all supported versions of OpenFlow. Ideally,
even at runtime it should be able to support all protocol versions at the same
time on different OpenFlow bridges (and perhaps even on the same bridge).

At the same time, it would be a shame to litter the core of the OVS code with
lots of ugly code concerned with the details of various OpenFlow protocol
versions.

The primary approach to compatibility is to abstract most of the details of the
differences from the core code, by adding a protocol layer that translates
between OF1.x and a slightly higher-level abstract representation. The core of
this approach is the many struct ofputil_* structures in
include/openvswitch/ofp-util.h.

As a consequence of this approach, OVS cannot use OpenFlow protocol definitions
that closely resemble those in the OpenFlow specification, because
openflow.h in different versions of the OpenFlow specification defines the
same identifier with different values. Instead, openflow-common.h contains
definitions that are common to all the specifications and separate protocol
version-specific headers contain protocol-specific definitions renamed so as
not to conflict, e.g. OFPAT10_ENQUEUE and OFPAT11_ENQUEUE for the
OpenFlow 1.0 and 1.1 values for OFPAT_ENQUEUE. Generally, in cases of
conflict, the protocol layer will define a more abstract OFPUTIL_* or
struct ofputil_*.

Here are the current approaches in a few tricky areas:

	Port numbering.

OpenFlow 1.0 has 16-bit port numbers and later OpenFlow versions have 32-bit
port numbers. For now, OVS support for later protocol versions requires all
port numbers to fall into the 16-bit range, translating the reserved
OFPP_* port numbers.

	Actions.

OpenFlow 1.0 and later versions have very different ideas of actions. OVS
reconciles by translating all the versions’ actions (and instructions) to and
from a common internal representation.

OpenFlow 1.1

OpenFlow 1.1 support is complete.

OpenFlow 1.2

OpenFlow 1.2 support is complete.

OpenFlow 1.3

OpenFlow 1.3 support requires OpenFlow 1.2 as a prerequisite, plus the
following additional work. (This is based on the change log at the end of the
OF1.3 spec, reusing most of the section titles directly. I didn’t compare the
specs carefully yet.)

	Add support for multipart requests.

Currently we always report OFPBRC_MULTIPART_BUFFER_OVERFLOW.

(optional for OF1.3+)

	IPv6 extension header handling support.

Fully implementing this requires kernel support. This likely will take some
careful and probably time-consuming design work. The actual coding, once
that is all done, is probably 2 or 3 days work.

(optional for OF1.3+)

	Per-flow meters.

OpenFlow protocol support is now implemented. Support for the special
OFPM_SLOWPATH and OFPM_CONTROLLER meters is missing. Support for
the software switch is under review.

(optional for OF1.3+)

	Auxiliary connections.

An implementation in generic code might be a week’s worth of work. The value
of an implementation in generic code is questionable, though, since much of
the benefit of axuiliary connections is supposed to be to take advantage of
hardware support. (We could make the kernel module somehow send packets
across the auxiliary connections directly, for some kind of “hardware”
support, if we judged it useful enough.)

(optional for OF1.3+)

	Provider Backbone Bridge tagging.

I don’t plan to implement this (but we’d accept an implementation).

(optional for OF1.3+)

	On-demand flow counters.

I think this might be a real optimization in some cases for the software
switch.

(optional for OF1.3+)

OpenFlow 1.4 & ONF Extensions for 1.3.X Pack1

The following features are both defined as a set of ONF Extensions for 1.3 and
integrated in 1.4.

When defined as an ONF Extension for 1.3, the feature is using the Experimenter
mechanism with the ONF Experimenter ID.

When defined integrated in 1.4, the feature use the standard OpenFlow
structures (for example defined in openflow-1.4.h).

The two definitions for each feature are independent and can exist in parallel
in OVS.

	Flow entry notifications

This seems to be modelled after OVS’s NXST_FLOW_MONITOR.

(EXT-187)
(optional for OF1.4+)

	Role Status

Already implemented as a 1.4 feature.

(EXT-191)

(required for OF1.4+)

	Flow entry eviction

OVS has flow eviction functionality. table_mod OFPTC_EVICTION,
flow_mod 'importance', and table_desc ofp_table_mod_prop_eviction
need to be implemented.

(EXT-192-e)

(optional for OF1.4+)

	Vacancy events

(EXT-192-v)

(optional for OF1.4+)

	Bundle

Transactional modification. OpenFlow 1.4 requires to support
flow_mods and port_mods in a bundle if bundle is supported.
(Not related to OVS’s ‘ofbundle’ stuff.)

Implemented as an OpenFlow 1.4 feature. Only flow_mods and port_mods are
supported in a bundle. If the bundle includes port mods, it may not specify
the OFPBF_ATOMIC flag. Nevertheless, port mods and flow mods in a bundle
are always applied in order and consecutive flow mods between port mods are
made available to lookups atomically.

(EXT-230)

(optional for OF1.4+)

	Table synchronisation

Probably not so useful to the software switch.

(EXT-232)

(optional for OF1.4+)

	Group and Meter change notifications

(EXT-235)

(optional for OF1.4+)

	Bad flow entry priority error

Probably not so useful to the software switch.

(EXT-236)

(optional for OF1.4+)

	Set async config error

(EXT-237)

(optional for OF1.4+)

	PBB UCA header field

See comment on Provider Backbone Bridge in section about OpenFlow 1.3.

(EXT-256)

(optional for OF1.4+)

	Multipart timeout error

(EXT-264)

(required for OF1.4+)

OpenFlow 1.4 only

Those features are those only available in OpenFlow 1.4, other OpenFlow 1.4
features are listed in the previous section.

	More extensible wire protocol

Many on-wire structures got TLVs.

All required features are now supported.
Remaining optional: table desc, table-status

(EXT-262)

(required for OF1.4+)

	Optical port properties

(EXT-154)

(optional for OF1.4+)

OpenFlow 1.5 & ONF Extensions for 1.3.X Pack2

The following features are both defined as a set of ONF Extensions for 1.3 and
integrated in 1.5. Note that this list is not definitive as those are not yet
published.

When defined as an ONF Extension for 1.3, the feature is using the Experimenter
mechanism with the ONF Experimenter ID. When defined integrated in 1.5, the
feature use the standard OpenFlow structures (for example defined in
openflow-1.5.h).

The two definitions for each feature are independent and can exist in parallel
in OVS.

	Time scheduled bundles

(EXT-340)

(optional for OF1.5+)

OpenFlow 1.5 only

Those features are those only available in OpenFlow 1.5, other OpenFlow 1.5
features are listed in the previous section. Note that this list is not
definitive as OpenFlow 1.5 is not yet published.

	Egress Tables

(EXT-306)

(optional for OF1.5+)

	Packet Type aware pipeline

Prototype for OVS was done during specification.

(EXT-112)

(optional for OF1.5+)

	Extensible Flow Entry Statistics

(EXT-334)

(required for OF1.5+)

	Flow Entry Statistics Trigger

(EXT-335)

(optional for OF1.5+)

	Controller connection status

Prototype for OVS was done during specification.

(EXT-454)

(optional for OF1.5+)

	Meter action

(EXT-379)

(required for OF1.5+ if metering is supported)

	Port properties for pipeline fields

Prototype for OVS was done during specification.

(EXT-388)

(optional for OF1.5+)

	Port property for recirculation

Prototype for OVS was done during specification.

(EXT-399)

(optional for OF1.5+)

General

	ovs-ofctl(8) often lists as Nicira extensions features that later OpenFlow
versions support in standard ways.

How to contribute

If you plan to contribute code for a feature, please let everyone know on
ovs-dev before you start work. This will help avoid duplicating work.

Consider the following:

	Testing.

Please test your code.

	Unit tests.

Consider writing some. The tests directory has many examples that you can
use as a starting point.

	ovs-ofctl.

If you add a feature that is useful for some ovs-ofctl command then you
should add support for it there.

	Documentation.

If you add a user-visible feature, then you should document it in the
appropriate manpage and mention it in NEWS as well.

Refer to Contributing to Open vSwitch for more information.

 Bonding

Bonding

Bonding allows two or more interfaces (the “slaves”) to share network traffic.
From a high-level point of view, bonded interfaces act like a single port, but
they have the bandwidth of multiple network devices, e.g. two 1 GB physical
interfaces act like a single 2 GB interface. Bonds also increase robustness:
the bonded port does not go down as long as at least one of its slaves is up.

In vswitchd, a bond always has at least two slaves (and may have more). If a
configuration error, etc. would cause a bond to have only one slave, the port
becomes an ordinary port, not a bonded port, and none of the special features
of bonded ports described in this section apply.

There are many forms of bonding of which ovs-vswitchd implements only a few.
The most complex bond ovs-vswitchd implements is called “source load balancing”
or SLB bonding. SLB bonding divides traffic among the slaves based on the
Ethernet source address. This is useful only if the traffic over the bond has
multiple Ethernet source addresses, for example if network traffic from
multiple VMs are multiplexed over the bond.

Note

Most of the ovs-vswitchd implementation is in vswitchd/bridge.c, so code
references below should be assumed to refer to that file except as otherwise
specified.

 OVSDB Replication Implementation

